具有单分子C3H6陷阱的超稳定烷基MOF的成本效益可扩展生产,用于记录从C2H4中捕获痕量C3H6。

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Miao Chang,Zitong Wang,Ruihan Wang,Minghui Liu,Yujie Wang,Dahuan Liu
{"title":"具有单分子C3H6陷阱的超稳定烷基MOF的成本效益可扩展生产,用于记录从C2H4中捕获痕量C3H6。","authors":"Miao Chang,Zitong Wang,Ruihan Wang,Minghui Liu,Yujie Wang,Dahuan Liu","doi":"10.1002/anie.202515496","DOIUrl":null,"url":null,"abstract":"Highly efficient capture of trace C3H6 from C2H4 by physisorbents remains an enormous challenge to combine top-rank separation performance with excellent stability and economical scalability. We, herein, built a single-molecule C3H6 trap that bears an opposite series of oxygen and dense alkyl groups distributed in an ultramicroporous [Al(OH)(trans-CDC)] (Al-CDC, trans-H2CDC = trans-1,4-cyclohexanedicarboxylic acid). The ultra-stable trap with well-matched pore size and pore chemistry enables a record uptake (40.8 cm3(STP) g-1) at ultralow concentration, Henry coefficient (12685.5 cm3(STP) g-1 bar-1), initial adsorption heat difference (27.2 kJ mol-1), adsorption kinetic (0.49 min-1) and kinetic selectivity (3.1) for C3H6 with one of the highest initial C3H6 adsorption heats (50.5 kJ mol-1) and selectivity (16.3), establishing a novel benchmark for capture of trace C3H6. The C3H6 adsorption mechanism is deciphered to be thermodynamically driven owing to the synergism of multiple hydrogen-bonding and van der Waals (vdW) forces. Breakthrough tests validate that Al-CDC owns a record C2H4 productivity (≥99.999%) of 410.5 cm3(STP) g-1 for trace C3H6 capture with excellent reproducibility. The cost-effective scalable production with the cheapest cost (508.9 $ kg-1) and highest space-time yield (4564.8 kg m-3 day-1) and shaping of Al-CDC is realized with unaffected structural property and capture performance.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"50 1","pages":"e202515496"},"PeriodicalIF":16.9000,"publicationDate":"2025-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cost-Effective Scalable Production of Ultra-Stable Alkyl MOF Featuring Single-Molecule C3H6 Trap for Record Capture of Trace C3H6 from C2H4.\",\"authors\":\"Miao Chang,Zitong Wang,Ruihan Wang,Minghui Liu,Yujie Wang,Dahuan Liu\",\"doi\":\"10.1002/anie.202515496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Highly efficient capture of trace C3H6 from C2H4 by physisorbents remains an enormous challenge to combine top-rank separation performance with excellent stability and economical scalability. We, herein, built a single-molecule C3H6 trap that bears an opposite series of oxygen and dense alkyl groups distributed in an ultramicroporous [Al(OH)(trans-CDC)] (Al-CDC, trans-H2CDC = trans-1,4-cyclohexanedicarboxylic acid). The ultra-stable trap with well-matched pore size and pore chemistry enables a record uptake (40.8 cm3(STP) g-1) at ultralow concentration, Henry coefficient (12685.5 cm3(STP) g-1 bar-1), initial adsorption heat difference (27.2 kJ mol-1), adsorption kinetic (0.49 min-1) and kinetic selectivity (3.1) for C3H6 with one of the highest initial C3H6 adsorption heats (50.5 kJ mol-1) and selectivity (16.3), establishing a novel benchmark for capture of trace C3H6. The C3H6 adsorption mechanism is deciphered to be thermodynamically driven owing to the synergism of multiple hydrogen-bonding and van der Waals (vdW) forces. Breakthrough tests validate that Al-CDC owns a record C2H4 productivity (≥99.999%) of 410.5 cm3(STP) g-1 for trace C3H6 capture with excellent reproducibility. The cost-effective scalable production with the cheapest cost (508.9 $ kg-1) and highest space-time yield (4564.8 kg m-3 day-1) and shaping of Al-CDC is realized with unaffected structural property and capture performance.\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"50 1\",\"pages\":\"e202515496\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202515496\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202515496","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

物理吸附剂从C2H4中高效捕获痕量C3H6仍然是一个巨大的挑战,将一流的分离性能与优异的稳定性和经济的可扩展性相结合。在此,我们构建了一个单分子C3H6陷阱,该陷阱在超微孔[Al(OH)(反式cdc)] (Al (cdc,反式h2cdc =反式1,4-环己二羧酸)中含有相反系列的氧和密集的烷基。该超稳定捕集器的孔径和孔隙化学匹配良好,在超低浓度下对C3H6的吸收量(40.8 cm3(STP) g-1)、亨利系数(12685.5 cm3(STP) g-1 bar-1)、初始吸附热差(27.2 kJ mol-1)、吸附动力学(0.49 min-1)和动力学选择性(3.1),其中C3H6的初始吸附热(50.5 kJ mol-1)和选择性(16.3)最高,为捕获痕量C3H6建立了新的基准。C3H6的吸附机理是由多个氢键和范德华力(vdW)的协同作用驱动的热力学机制。突破性试验证实,Al-CDC捕获痕量C3H6的C2H4生产率(≥99.999%)为410.5 cm3(STP) g-1,具有出色的再现性。在不影响Al-CDC结构性能和俘获性能的情况下,实现了成本最低(508.9 $ kg-1)、空时产率最高(4564.8 kg m-3 day-1)的规模化生产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cost-Effective Scalable Production of Ultra-Stable Alkyl MOF Featuring Single-Molecule C3H6 Trap for Record Capture of Trace C3H6 from C2H4.
Highly efficient capture of trace C3H6 from C2H4 by physisorbents remains an enormous challenge to combine top-rank separation performance with excellent stability and economical scalability. We, herein, built a single-molecule C3H6 trap that bears an opposite series of oxygen and dense alkyl groups distributed in an ultramicroporous [Al(OH)(trans-CDC)] (Al-CDC, trans-H2CDC = trans-1,4-cyclohexanedicarboxylic acid). The ultra-stable trap with well-matched pore size and pore chemistry enables a record uptake (40.8 cm3(STP) g-1) at ultralow concentration, Henry coefficient (12685.5 cm3(STP) g-1 bar-1), initial adsorption heat difference (27.2 kJ mol-1), adsorption kinetic (0.49 min-1) and kinetic selectivity (3.1) for C3H6 with one of the highest initial C3H6 adsorption heats (50.5 kJ mol-1) and selectivity (16.3), establishing a novel benchmark for capture of trace C3H6. The C3H6 adsorption mechanism is deciphered to be thermodynamically driven owing to the synergism of multiple hydrogen-bonding and van der Waals (vdW) forces. Breakthrough tests validate that Al-CDC owns a record C2H4 productivity (≥99.999%) of 410.5 cm3(STP) g-1 for trace C3H6 capture with excellent reproducibility. The cost-effective scalable production with the cheapest cost (508.9 $ kg-1) and highest space-time yield (4564.8 kg m-3 day-1) and shaping of Al-CDC is realized with unaffected structural property and capture performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信