{"title":"软材料中的动态键化学:桥接适应性和机械稳健性。","authors":"Haeseung Lee,Jiyun Kim,Minwoo Lee,Jiheong Kang","doi":"10.1021/acs.chemrev.5c00566","DOIUrl":null,"url":null,"abstract":"Soft materials are polymer networks that can be easily deformed by external forces. Incorporating dynamic bonds into these networks imparts various functionalities─such as self-healing, recyclability, and 3D printability─by enabling fast and reversible bond formation. However, the relatively short lifetimes of dynamic bonds compared with permanent covalent bonds can compromise the mechanical robustness of the material. This review highlights design strategies that harness dynamic bonds effectively to achieve both functionality and mechanical robustness in soft materials. We first survey the types of dynamic bonds and their characteristic lifetimes, followed by introducing analytical methods to quantify the network dynamicity. Since the required degree of dynamicity varies depending on the target functionality, we further discuss how to incorporate appropriate dynamic bonds for functionality. Through this, we aim to provide design guidelines for soft materials that combine functionalities with mechanical toughness for reliable use in advanced applications.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"138 1","pages":""},"PeriodicalIF":55.8000,"publicationDate":"2025-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Bond Chemistry in Soft Materials: Bridging Adaptability and Mechanical Robustness.\",\"authors\":\"Haeseung Lee,Jiyun Kim,Minwoo Lee,Jiheong Kang\",\"doi\":\"10.1021/acs.chemrev.5c00566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soft materials are polymer networks that can be easily deformed by external forces. Incorporating dynamic bonds into these networks imparts various functionalities─such as self-healing, recyclability, and 3D printability─by enabling fast and reversible bond formation. However, the relatively short lifetimes of dynamic bonds compared with permanent covalent bonds can compromise the mechanical robustness of the material. This review highlights design strategies that harness dynamic bonds effectively to achieve both functionality and mechanical robustness in soft materials. We first survey the types of dynamic bonds and their characteristic lifetimes, followed by introducing analytical methods to quantify the network dynamicity. Since the required degree of dynamicity varies depending on the target functionality, we further discuss how to incorporate appropriate dynamic bonds for functionality. Through this, we aim to provide design guidelines for soft materials that combine functionalities with mechanical toughness for reliable use in advanced applications.\",\"PeriodicalId\":32,\"journal\":{\"name\":\"Chemical Reviews\",\"volume\":\"138 1\",\"pages\":\"\"},\"PeriodicalIF\":55.8000,\"publicationDate\":\"2025-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.chemrev.5c00566\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.chemrev.5c00566","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Dynamic Bond Chemistry in Soft Materials: Bridging Adaptability and Mechanical Robustness.
Soft materials are polymer networks that can be easily deformed by external forces. Incorporating dynamic bonds into these networks imparts various functionalities─such as self-healing, recyclability, and 3D printability─by enabling fast and reversible bond formation. However, the relatively short lifetimes of dynamic bonds compared with permanent covalent bonds can compromise the mechanical robustness of the material. This review highlights design strategies that harness dynamic bonds effectively to achieve both functionality and mechanical robustness in soft materials. We first survey the types of dynamic bonds and their characteristic lifetimes, followed by introducing analytical methods to quantify the network dynamicity. Since the required degree of dynamicity varies depending on the target functionality, we further discuss how to incorporate appropriate dynamic bonds for functionality. Through this, we aim to provide design guidelines for soft materials that combine functionalities with mechanical toughness for reliable use in advanced applications.
期刊介绍:
Chemical Reviews is a highly regarded and highest-ranked journal covering the general topic of chemistry. Its mission is to provide comprehensive, authoritative, critical, and readable reviews of important recent research in organic, inorganic, physical, analytical, theoretical, and biological chemistry.
Since 1985, Chemical Reviews has also published periodic thematic issues that focus on a single theme or direction of emerging research.