{"title":"用于短波红外探测的柔性InGaAs/InAlAs雪崩光电二极管。","authors":"Jishen Zhang,Rui Shao,Haiwen Xu,Kian Hua Tan,Satrio Wicaksono,Qiwen Kong,Gong Zhang,Chen Sun,Yue Chen,Aaron Danner,Soon-Fatt Yoon,Xiao Gong","doi":"10.1038/s41467-025-64401-2","DOIUrl":null,"url":null,"abstract":"Flexible detectors have gained growing research interest due to their promising applications in optical sensing and imaging systems with a broad field-of-view. However, most research have focused on conventional photodiodes of which the responsivity are limited at short-wave infrared due to the absence of internal multiplication gain. Here we have realized and demonstrated flexible thin-film InGaAs/InAlAs avalanche photodiodes on a mica substrate for short-wave infrared detection. This achievement was made possible by the development and implementation of a low-temperature bonding and well-optimized fabrication process. Our devices exhibit promising characteristics, including low dark current, good responsivity, and high multiplication gain. Even when subjected to bending conditions, the avalanche photodiodes maintain their general performance. The advent of such flexible InGaAs avalanche photodiodes with reliable and promising performance enables a significantly broader range of potential applications.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"45 1","pages":"9367"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flexible InGaAs/InAlAs avalanche photodiodes for short-wave infrared detection.\",\"authors\":\"Jishen Zhang,Rui Shao,Haiwen Xu,Kian Hua Tan,Satrio Wicaksono,Qiwen Kong,Gong Zhang,Chen Sun,Yue Chen,Aaron Danner,Soon-Fatt Yoon,Xiao Gong\",\"doi\":\"10.1038/s41467-025-64401-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flexible detectors have gained growing research interest due to their promising applications in optical sensing and imaging systems with a broad field-of-view. However, most research have focused on conventional photodiodes of which the responsivity are limited at short-wave infrared due to the absence of internal multiplication gain. Here we have realized and demonstrated flexible thin-film InGaAs/InAlAs avalanche photodiodes on a mica substrate for short-wave infrared detection. This achievement was made possible by the development and implementation of a low-temperature bonding and well-optimized fabrication process. Our devices exhibit promising characteristics, including low dark current, good responsivity, and high multiplication gain. Even when subjected to bending conditions, the avalanche photodiodes maintain their general performance. The advent of such flexible InGaAs avalanche photodiodes with reliable and promising performance enables a significantly broader range of potential applications.\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"45 1\",\"pages\":\"9367\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-64401-2\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-64401-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Flexible InGaAs/InAlAs avalanche photodiodes for short-wave infrared detection.
Flexible detectors have gained growing research interest due to their promising applications in optical sensing and imaging systems with a broad field-of-view. However, most research have focused on conventional photodiodes of which the responsivity are limited at short-wave infrared due to the absence of internal multiplication gain. Here we have realized and demonstrated flexible thin-film InGaAs/InAlAs avalanche photodiodes on a mica substrate for short-wave infrared detection. This achievement was made possible by the development and implementation of a low-temperature bonding and well-optimized fabrication process. Our devices exhibit promising characteristics, including low dark current, good responsivity, and high multiplication gain. Even when subjected to bending conditions, the avalanche photodiodes maintain their general performance. The advent of such flexible InGaAs avalanche photodiodes with reliable and promising performance enables a significantly broader range of potential applications.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.