实用电催化驱动补偿策略调解钠离子袋电池容量退化。

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-10-23 DOI:10.1021/acsnano.5c13260
Jianguo Li,Youzhong Dong,Xin Wang,Yunbo Li,Qinghua Fan,Jiantie Xu,Haijiao Xie,Quan Kuang,Yanming Zhao
{"title":"实用电催化驱动补偿策略调解钠离子袋电池容量退化。","authors":"Jianguo Li,Youzhong Dong,Xin Wang,Yunbo Li,Qinghua Fan,Jiantie Xu,Haijiao Xie,Quan Kuang,Yanming Zhao","doi":"10.1021/acsnano.5c13260","DOIUrl":null,"url":null,"abstract":"Irreversible active sodium loss (ASL) is widely regarded as a pivotal factor influencing the cycle life and energy density of sodium-ion full cells. Introducing practical electrocatalyst-driven compensation strategies for ASL and other multiple benefits in sodium-ion batteries (SIBs) is a tireless pursuit of researchers. Herein, Pd atoms were used to catalytically drive the decomposition of Na2O to compensate for ASL in Na3(Mn0.8Fe0.2)2(PO4)(P2O7)//hard carbon (NMFPP//HC) pouch cells. This compensation strategy not only replenished the sodium inventory loss caused by SEI and Mn2+ shuttle effect but also constructed a NaF-rich rigid CEI layer. The dissolution and shuttling of Mn2+ can be significantly inhibited by this kind of rigid NaF-CEI layer. Finally, incorporating 8 wt % currently modified precondition with NMFPP cathode, the energy density of the corresponding pouch cell (NMFPP-PNO//HC) presents an essential improvement of 29% relative to the unmodified system. This study proposes a universal approach for ASL compensation and electrode stabilization in the design of high-performance SIBs.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"50 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reconciling Capacity Degradation for Sodium-Ion Pouch Cell by Practical Electrocatalytic-Driven Compensation Strategy.\",\"authors\":\"Jianguo Li,Youzhong Dong,Xin Wang,Yunbo Li,Qinghua Fan,Jiantie Xu,Haijiao Xie,Quan Kuang,Yanming Zhao\",\"doi\":\"10.1021/acsnano.5c13260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Irreversible active sodium loss (ASL) is widely regarded as a pivotal factor influencing the cycle life and energy density of sodium-ion full cells. Introducing practical electrocatalyst-driven compensation strategies for ASL and other multiple benefits in sodium-ion batteries (SIBs) is a tireless pursuit of researchers. Herein, Pd atoms were used to catalytically drive the decomposition of Na2O to compensate for ASL in Na3(Mn0.8Fe0.2)2(PO4)(P2O7)//hard carbon (NMFPP//HC) pouch cells. This compensation strategy not only replenished the sodium inventory loss caused by SEI and Mn2+ shuttle effect but also constructed a NaF-rich rigid CEI layer. The dissolution and shuttling of Mn2+ can be significantly inhibited by this kind of rigid NaF-CEI layer. Finally, incorporating 8 wt % currently modified precondition with NMFPP cathode, the energy density of the corresponding pouch cell (NMFPP-PNO//HC) presents an essential improvement of 29% relative to the unmodified system. This study proposes a universal approach for ASL compensation and electrode stabilization in the design of high-performance SIBs.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.5c13260\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c13260","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

不可逆活性钠损失(ASL)被广泛认为是影响钠离子电池循环寿命和能量密度的关键因素。在钠离子电池中引入实用的电催化剂驱动的ASL补偿策略和其他多重效益是研究人员孜孜不倦的追求。本文利用钯原子催化驱动Na2O的分解,以补偿Na3(Mn0.8Fe0.2)2(PO4)(P2O7)//硬碳(NMFPP//HC)袋状电池中的ASL。这种补偿策略不仅弥补了SEI和Mn2+穿梭效应造成的钠库存损失,而且构建了富naf的刚性CEI层。这种刚性NaF-CEI层可以明显抑制Mn2+的溶解和穿梭。最后,在NMFPP阴极中加入8 wt %目前改进的前提条件,相应的袋状电池(NMFPP- pno //HC)的能量密度相对于未改进的系统有了29%的本质提高。本研究提出了一种在高性能sib设计中用于ASL补偿和电极稳定的通用方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reconciling Capacity Degradation for Sodium-Ion Pouch Cell by Practical Electrocatalytic-Driven Compensation Strategy.
Irreversible active sodium loss (ASL) is widely regarded as a pivotal factor influencing the cycle life and energy density of sodium-ion full cells. Introducing practical electrocatalyst-driven compensation strategies for ASL and other multiple benefits in sodium-ion batteries (SIBs) is a tireless pursuit of researchers. Herein, Pd atoms were used to catalytically drive the decomposition of Na2O to compensate for ASL in Na3(Mn0.8Fe0.2)2(PO4)(P2O7)//hard carbon (NMFPP//HC) pouch cells. This compensation strategy not only replenished the sodium inventory loss caused by SEI and Mn2+ shuttle effect but also constructed a NaF-rich rigid CEI layer. The dissolution and shuttling of Mn2+ can be significantly inhibited by this kind of rigid NaF-CEI layer. Finally, incorporating 8 wt % currently modified precondition with NMFPP cathode, the energy density of the corresponding pouch cell (NMFPP-PNO//HC) presents an essential improvement of 29% relative to the unmodified system. This study proposes a universal approach for ASL compensation and electrode stabilization in the design of high-performance SIBs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信