Shen Sheng,Yuanhe Li,Ryan Ray Yen Lee,Yuxuan Gao,Huize Han,Zhijun Wan,Calvent Owh,Carol-Anne Ming Yi Chua,Zhen Yu Chong,Nicholas Wee Hao Ng,Wei Tang,Chong Tian
{"title":"面向可调药物释放的可编程分子脱线。","authors":"Shen Sheng,Yuanhe Li,Ryan Ray Yen Lee,Yuxuan Gao,Huize Han,Zhijun Wan,Calvent Owh,Carol-Anne Ming Yi Chua,Zhen Yu Chong,Nicholas Wee Hao Ng,Wei Tang,Chong Tian","doi":"10.1038/s41467-025-64452-5","DOIUrl":null,"url":null,"abstract":"Precise control of molecular motion is essential for artificial molecular machines. Pseudorotaxane dethreading, a key process within interlocked architectures, offers a means to regulate such motion. However, achieving predictable and programmable control over dethreading kinetics remains challenging. Here, we achieve systematic modulation of dethreading behaviour through component engineering, using a pseudorotaxane platform composed of 24-crown-8-based macrocycles and adjustable benzylic amine stoppers. Activation energies are continuously tunable across the range of 22 to 30 kcal/mol, with a resolution as fine as 0.5-1.5 kcal/mol. Crystallographic analyses and computational modeling elucidate the dethreading pathway and the structure-kinetic relationships. As a proof-of-concept, representative assemblies are functionalized with the anticancer agent camptothecin. The resulting pseudorotaxanes display a consistent trend between their dethreading rates and cytotoxic potency. This work bridges molecular-scale mechanical motion with biological effects and provides a generalizable strategy for the design of programmable drug delivery systems. The pseudorotaxane toolkit reported here lays the foundation for the development of advanced molecular machines in biomedical applications.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"130 1","pages":"9390"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Programmable molecular dethreading towards tunable drug release.\",\"authors\":\"Shen Sheng,Yuanhe Li,Ryan Ray Yen Lee,Yuxuan Gao,Huize Han,Zhijun Wan,Calvent Owh,Carol-Anne Ming Yi Chua,Zhen Yu Chong,Nicholas Wee Hao Ng,Wei Tang,Chong Tian\",\"doi\":\"10.1038/s41467-025-64452-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Precise control of molecular motion is essential for artificial molecular machines. Pseudorotaxane dethreading, a key process within interlocked architectures, offers a means to regulate such motion. However, achieving predictable and programmable control over dethreading kinetics remains challenging. Here, we achieve systematic modulation of dethreading behaviour through component engineering, using a pseudorotaxane platform composed of 24-crown-8-based macrocycles and adjustable benzylic amine stoppers. Activation energies are continuously tunable across the range of 22 to 30 kcal/mol, with a resolution as fine as 0.5-1.5 kcal/mol. Crystallographic analyses and computational modeling elucidate the dethreading pathway and the structure-kinetic relationships. As a proof-of-concept, representative assemblies are functionalized with the anticancer agent camptothecin. The resulting pseudorotaxanes display a consistent trend between their dethreading rates and cytotoxic potency. This work bridges molecular-scale mechanical motion with biological effects and provides a generalizable strategy for the design of programmable drug delivery systems. The pseudorotaxane toolkit reported here lays the foundation for the development of advanced molecular machines in biomedical applications.\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"130 1\",\"pages\":\"9390\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-64452-5\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-64452-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Programmable molecular dethreading towards tunable drug release.
Precise control of molecular motion is essential for artificial molecular machines. Pseudorotaxane dethreading, a key process within interlocked architectures, offers a means to regulate such motion. However, achieving predictable and programmable control over dethreading kinetics remains challenging. Here, we achieve systematic modulation of dethreading behaviour through component engineering, using a pseudorotaxane platform composed of 24-crown-8-based macrocycles and adjustable benzylic amine stoppers. Activation energies are continuously tunable across the range of 22 to 30 kcal/mol, with a resolution as fine as 0.5-1.5 kcal/mol. Crystallographic analyses and computational modeling elucidate the dethreading pathway and the structure-kinetic relationships. As a proof-of-concept, representative assemblies are functionalized with the anticancer agent camptothecin. The resulting pseudorotaxanes display a consistent trend between their dethreading rates and cytotoxic potency. This work bridges molecular-scale mechanical motion with biological effects and provides a generalizable strategy for the design of programmable drug delivery systems. The pseudorotaxane toolkit reported here lays the foundation for the development of advanced molecular machines in biomedical applications.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.