集成Ni1-Px催化对低浓度CO2电还原。

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiuwen Shi,Xiongyi Liang,Lingyue Liu,Fangxin Hu,Yuhang Liu,Yuhang Jin,Yang Yu,Tingting Zhao,Pingping Wang,Jie Ding,Xiao Cheng Zeng,Bin Liu,Hong Bin Yang
{"title":"集成Ni1-Px催化对低浓度CO2电还原。","authors":"Xiuwen Shi,Xiongyi Liang,Lingyue Liu,Fangxin Hu,Yuhang Liu,Yuhang Jin,Yang Yu,Tingting Zhao,Pingping Wang,Jie Ding,Xiao Cheng Zeng,Bin Liu,Hong Bin Yang","doi":"10.1002/anie.202518003","DOIUrl":null,"url":null,"abstract":"The electrochemical CO2 reduction reaction (CO2RR) powered by renewable electricity offers a promising approach for sustainable carbon utilization. However, under industrially relevant low CO2 concentrations (5-15 vol.%), the efficiency and selectivity of electrochemical CO2RR are significantly constrained by the limited CO2 supply and the competitive hydrogen evolution reaction (HER). Herein, we report integrative Ni1-Px catalytic pairs (Ni1-Px/ICPs) that exhibit super CO2-to-CO conversion efficiency under low-concentration CO2 conditions. In situ attenuated total reflectance surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) and X-ray absorption spectroscopy (XAS) measurements show that P incorporation modulates the electrochemical microenvironment and accelerates reaction kinetics. H/D isotopic substitution experiments and theoretical calculations unveil a mechanistic transition from an Eley-Rideal to Langmuir-Hinshelwood pathway, enabled by cooperative adsorption on adjacent Ni and P sites. Notably, a hydrogen-bonded six-membered Ni-C-O-H-O-P-Ni ring forms between adsorbed CO2 and H2O, facilitating proton-coupled electron transfer and lowering the reaction barrier. This unique adsorption motif enhances CO2 activation, suppresses HER, and enables efficient CO generation at low CO2 concentrations. Our findings show the importance of atomically dispersed catalytic pairs for advancing carbon utilization and overcoming selectivity challenges in electrochemical hydrogenation.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"108 1","pages":"e202518003"},"PeriodicalIF":16.9000,"publicationDate":"2025-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrative Ni1-Px Catalytic Pairs for Low-Concentration CO2 Electroreduction.\",\"authors\":\"Xiuwen Shi,Xiongyi Liang,Lingyue Liu,Fangxin Hu,Yuhang Liu,Yuhang Jin,Yang Yu,Tingting Zhao,Pingping Wang,Jie Ding,Xiao Cheng Zeng,Bin Liu,Hong Bin Yang\",\"doi\":\"10.1002/anie.202518003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The electrochemical CO2 reduction reaction (CO2RR) powered by renewable electricity offers a promising approach for sustainable carbon utilization. However, under industrially relevant low CO2 concentrations (5-15 vol.%), the efficiency and selectivity of electrochemical CO2RR are significantly constrained by the limited CO2 supply and the competitive hydrogen evolution reaction (HER). Herein, we report integrative Ni1-Px catalytic pairs (Ni1-Px/ICPs) that exhibit super CO2-to-CO conversion efficiency under low-concentration CO2 conditions. In situ attenuated total reflectance surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) and X-ray absorption spectroscopy (XAS) measurements show that P incorporation modulates the electrochemical microenvironment and accelerates reaction kinetics. H/D isotopic substitution experiments and theoretical calculations unveil a mechanistic transition from an Eley-Rideal to Langmuir-Hinshelwood pathway, enabled by cooperative adsorption on adjacent Ni and P sites. Notably, a hydrogen-bonded six-membered Ni-C-O-H-O-P-Ni ring forms between adsorbed CO2 and H2O, facilitating proton-coupled electron transfer and lowering the reaction barrier. This unique adsorption motif enhances CO2 activation, suppresses HER, and enables efficient CO generation at low CO2 concentrations. Our findings show the importance of atomically dispersed catalytic pairs for advancing carbon utilization and overcoming selectivity challenges in electrochemical hydrogenation.\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"108 1\",\"pages\":\"e202518003\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202518003\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202518003","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

以可再生电力为动力的电化学CO2还原反应(CO2RR)为碳的可持续利用提供了一种很有前景的方法。然而,在工业相关的低CO2浓度(5-15 vol.%)下,电化学CO2RR的效率和选择性受到有限的CO2供应和竞争性析氢反应(HER)的显著限制。本文报道了Ni1-Px一体化催化对(Ni1-Px/ icp)在低浓度CO2条件下表现出超强的CO2-to- co转化效率。原位衰减全反射表面增强红外吸收光谱(ATR-SEIRAS)和x射线吸收光谱(XAS)测量表明,P的掺入调节了电化学微环境,加速了反应动力学。H/D同位素取代实验和理论计算揭示了从ey- rideal途径到Langmuir-Hinshelwood途径的机制转变,这是由相邻Ni和P位点的协同吸附实现的。值得注意的是,在吸附的CO2和H2O之间形成了一个氢键六元Ni-C-O-H-O-P-Ni环,促进了质子耦合电子转移,降低了反应势垒。这种独特的吸附基序增强了CO2的活化,抑制了HER,并在低CO2浓度下实现了高效的CO生成。我们的研究结果表明,原子分散的催化对促进碳利用和克服电化学加氢的选择性挑战的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrative Ni1-Px Catalytic Pairs for Low-Concentration CO2 Electroreduction.
The electrochemical CO2 reduction reaction (CO2RR) powered by renewable electricity offers a promising approach for sustainable carbon utilization. However, under industrially relevant low CO2 concentrations (5-15 vol.%), the efficiency and selectivity of electrochemical CO2RR are significantly constrained by the limited CO2 supply and the competitive hydrogen evolution reaction (HER). Herein, we report integrative Ni1-Px catalytic pairs (Ni1-Px/ICPs) that exhibit super CO2-to-CO conversion efficiency under low-concentration CO2 conditions. In situ attenuated total reflectance surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) and X-ray absorption spectroscopy (XAS) measurements show that P incorporation modulates the electrochemical microenvironment and accelerates reaction kinetics. H/D isotopic substitution experiments and theoretical calculations unveil a mechanistic transition from an Eley-Rideal to Langmuir-Hinshelwood pathway, enabled by cooperative adsorption on adjacent Ni and P sites. Notably, a hydrogen-bonded six-membered Ni-C-O-H-O-P-Ni ring forms between adsorbed CO2 and H2O, facilitating proton-coupled electron transfer and lowering the reaction barrier. This unique adsorption motif enhances CO2 activation, suppresses HER, and enables efficient CO generation at low CO2 concentrations. Our findings show the importance of atomically dispersed catalytic pairs for advancing carbon utilization and overcoming selectivity challenges in electrochemical hydrogenation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信