基于智能手机的自动细胞分析平台。

Meryem Beyza Avci, Fatma Kurul, Mehmet Turkan, Arif E Cetin
{"title":"基于智能手机的自动细胞分析平台。","authors":"Meryem Beyza Avci, Fatma Kurul, Mehmet Turkan, Arif E Cetin","doi":"10.1038/s44303-025-00093-z","DOIUrl":null,"url":null,"abstract":"<p><p>Cell analysis technologies play a critical role in biomedical research, enabling precise evaluation of essential parameters such as cell viability, density, and confluency. In this article, we introduce Quantella, a smartphone-based platform designed to perform comprehensive cell analysis encompassing these key metrics. Addressing limitations of conventional systems, such as high cost, hardware complexity, and limited adaptability, Quantella integrates low-cost optics, a rinsable flow cell, bluetooth-enabled hardware control, and a cloud-connected mobile application. Its adaptive image-processing pipeline employs multi-exposure fusion, thresholding, and morphological filtering for accurate, morphology-independent segmentation without requiring deep learning or user-defined parameters. System validation studies across diverse cell types showed deviations under 5% from flow cytometry. With the capacity to analyze over 10,000 cells per test, Quantella delivers high-throughput, reproducible results. Its accessible, scalable design makes it a promising tool for biomedical research, diagnostics, and education, particularly in resource-limited settings.</p>","PeriodicalId":501709,"journal":{"name":"npj Imaging","volume":"3 1","pages":"53"},"PeriodicalIF":0.0000,"publicationDate":"2025-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12546929/pdf/","citationCount":"0","resultStr":"{\"title\":\"Automated smartphone based cell analysis platform.\",\"authors\":\"Meryem Beyza Avci, Fatma Kurul, Mehmet Turkan, Arif E Cetin\",\"doi\":\"10.1038/s44303-025-00093-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cell analysis technologies play a critical role in biomedical research, enabling precise evaluation of essential parameters such as cell viability, density, and confluency. In this article, we introduce Quantella, a smartphone-based platform designed to perform comprehensive cell analysis encompassing these key metrics. Addressing limitations of conventional systems, such as high cost, hardware complexity, and limited adaptability, Quantella integrates low-cost optics, a rinsable flow cell, bluetooth-enabled hardware control, and a cloud-connected mobile application. Its adaptive image-processing pipeline employs multi-exposure fusion, thresholding, and morphological filtering for accurate, morphology-independent segmentation without requiring deep learning or user-defined parameters. System validation studies across diverse cell types showed deviations under 5% from flow cytometry. With the capacity to analyze over 10,000 cells per test, Quantella delivers high-throughput, reproducible results. Its accessible, scalable design makes it a promising tool for biomedical research, diagnostics, and education, particularly in resource-limited settings.</p>\",\"PeriodicalId\":501709,\"journal\":{\"name\":\"npj Imaging\",\"volume\":\"3 1\",\"pages\":\"53\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12546929/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s44303-025-00093-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44303-025-00093-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

细胞分析技术在生物医学研究中起着至关重要的作用,能够精确评估基本参数,如细胞活力、密度和融合度。在本文中,我们介绍了Quantella,一个基于智能手机的平台,旨在执行包含这些关键指标的全面细胞分析。为了解决传统系统的局限性,例如高成本、硬件复杂性和有限的适应性,Quantella集成了低成本光学器件、可清洗的液流池、蓝牙硬件控制和云连接的移动应用程序。它的自适应图像处理管道采用多曝光融合、阈值分割和形态滤波来实现准确的、与形态无关的分割,而不需要深度学习或用户自定义参数。不同细胞类型的系统验证研究显示,流式细胞术的偏差低于5%。凭借每次测试分析超过10,000个细胞的能力,Quantella提供高通量,可重复的结果。其易于使用、可扩展的设计使其成为生物医学研究、诊断和教育的有前途的工具,特别是在资源有限的环境中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated smartphone based cell analysis platform.

Cell analysis technologies play a critical role in biomedical research, enabling precise evaluation of essential parameters such as cell viability, density, and confluency. In this article, we introduce Quantella, a smartphone-based platform designed to perform comprehensive cell analysis encompassing these key metrics. Addressing limitations of conventional systems, such as high cost, hardware complexity, and limited adaptability, Quantella integrates low-cost optics, a rinsable flow cell, bluetooth-enabled hardware control, and a cloud-connected mobile application. Its adaptive image-processing pipeline employs multi-exposure fusion, thresholding, and morphological filtering for accurate, morphology-independent segmentation without requiring deep learning or user-defined parameters. System validation studies across diverse cell types showed deviations under 5% from flow cytometry. With the capacity to analyze over 10,000 cells per test, Quantella delivers high-throughput, reproducible results. Its accessible, scalable design makes it a promising tool for biomedical research, diagnostics, and education, particularly in resource-limited settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信