在细胞成像中精确表型分析的混杂意识基础建模。

Giorgos Papanastasiou, Pedro P Sanchez, Argyrios Christodoulidis, Guang Yang, Walter Hugo Lopez Pinaya
{"title":"在细胞成像中精确表型分析的混杂意识基础建模。","authors":"Giorgos Papanastasiou, Pedro P Sanchez, Argyrios Christodoulidis, Guang Yang, Walter Hugo Lopez Pinaya","doi":"10.1038/s44303-025-00116-9","DOIUrl":null,"url":null,"abstract":"<p><p>Image-based profiling is rapidly transforming drug discovery, offering unprecedented insights into cellular responses. However, experimental variability hinders accurate identification of mechanisms of action (MoA) and compound targets. Existing methods commonly fail to generalize to novel compounds, limiting their utility in exploring uncharted chemical space. To address this, we present a confounder-aware foundation model integrating a causal mechanism within a latent diffusion model, enabling the generation of balanced synthetic datasets for robust biological effect estimation. Trained on over 13 million Cell Painting images and 107 thousand compounds, our model learns robust cellular phenotype representations, mitigating confounder impact. We achieve state-of-the-art MoA and target prediction for both seen (0.66 and 0.65 ROC-AUC) and unseen compounds (0.65 and 0.73 ROC-AUC), significantly surpassing real and batch-corrected data. This innovative framework advances drug discovery by delivering robust biological effect estimations for novel compounds, potentially accelerating hit expansion. Our model establishes a scalable and adaptable foundation for cell imaging, holding the potential to become a cornerstone in data-driven drug discovery.</p>","PeriodicalId":501709,"journal":{"name":"npj Imaging","volume":"3 1","pages":"52"},"PeriodicalIF":0.0000,"publicationDate":"2025-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Confounder-aware foundation modeling for accurate phenotype profiling in cell imaging.\",\"authors\":\"Giorgos Papanastasiou, Pedro P Sanchez, Argyrios Christodoulidis, Guang Yang, Walter Hugo Lopez Pinaya\",\"doi\":\"10.1038/s44303-025-00116-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Image-based profiling is rapidly transforming drug discovery, offering unprecedented insights into cellular responses. However, experimental variability hinders accurate identification of mechanisms of action (MoA) and compound targets. Existing methods commonly fail to generalize to novel compounds, limiting their utility in exploring uncharted chemical space. To address this, we present a confounder-aware foundation model integrating a causal mechanism within a latent diffusion model, enabling the generation of balanced synthetic datasets for robust biological effect estimation. Trained on over 13 million Cell Painting images and 107 thousand compounds, our model learns robust cellular phenotype representations, mitigating confounder impact. We achieve state-of-the-art MoA and target prediction for both seen (0.66 and 0.65 ROC-AUC) and unseen compounds (0.65 and 0.73 ROC-AUC), significantly surpassing real and batch-corrected data. This innovative framework advances drug discovery by delivering robust biological effect estimations for novel compounds, potentially accelerating hit expansion. Our model establishes a scalable and adaptable foundation for cell imaging, holding the potential to become a cornerstone in data-driven drug discovery.</p>\",\"PeriodicalId\":501709,\"journal\":{\"name\":\"npj Imaging\",\"volume\":\"3 1\",\"pages\":\"52\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s44303-025-00116-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44303-025-00116-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于图像的分析正在迅速改变药物发现,为细胞反应提供前所未有的见解。然而,实验的可变性阻碍了对作用机制(MoA)和化合物靶点的准确识别。现有的方法通常不能推广到新的化合物,限制了它们在探索未知化学领域的效用。为了解决这个问题,我们提出了一个混杂因素感知的基础模型,该模型在潜在扩散模型中集成了因果机制,从而能够生成平衡的合成数据集,用于稳健的生物效应估计。经过超过1300万张细胞绘画图像和10.7万种化合物的训练,我们的模型学习了强大的细胞表型表征,减轻了混杂因素的影响。我们对可见化合物(0.66和0.65 ROC-AUC)和未见化合物(0.65和0.73 ROC-AUC)都实现了最先进的MoA和目标预测,显著超过了真实和批量校正的数据。这一创新的框架通过对新化合物提供可靠的生物效应评估来推进药物发现,有可能加速hit扩展。我们的模型为细胞成像建立了一个可扩展和可适应的基础,有可能成为数据驱动药物发现的基石。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Confounder-aware foundation modeling for accurate phenotype profiling in cell imaging.

Image-based profiling is rapidly transforming drug discovery, offering unprecedented insights into cellular responses. However, experimental variability hinders accurate identification of mechanisms of action (MoA) and compound targets. Existing methods commonly fail to generalize to novel compounds, limiting their utility in exploring uncharted chemical space. To address this, we present a confounder-aware foundation model integrating a causal mechanism within a latent diffusion model, enabling the generation of balanced synthetic datasets for robust biological effect estimation. Trained on over 13 million Cell Painting images and 107 thousand compounds, our model learns robust cellular phenotype representations, mitigating confounder impact. We achieve state-of-the-art MoA and target prediction for both seen (0.66 and 0.65 ROC-AUC) and unseen compounds (0.65 and 0.73 ROC-AUC), significantly surpassing real and batch-corrected data. This innovative framework advances drug discovery by delivering robust biological effect estimations for novel compounds, potentially accelerating hit expansion. Our model establishes a scalable and adaptable foundation for cell imaging, holding the potential to become a cornerstone in data-driven drug discovery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信