植物细胞中叶绿体的最佳圆盘包装。

IF 9.1 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Nico Schramma, Eric R Weeks, Maziyar Jalaal
{"title":"植物细胞中叶绿体的最佳圆盘包装。","authors":"Nico Schramma, Eric R Weeks, Maziyar Jalaal","doi":"10.1073/pnas.2511696122","DOIUrl":null,"url":null,"abstract":"<p><p>Photosynthesis is essential for ecosystem survival, but while plants require light, excessive exposure can damage cells. Chloroplasts, photosynthetic organelles, respond via self-organized motion within cells to optimize light absorption. These disk-shaped organelles must balance two competing needs: dense packing to enhance absorption under dim light and rapid spatial rearrangement to avoid damage from excess light. Using microscopy, we show that plant cell shape and chloroplast size achieve both goals: dense monolayer packing for optimal absorption in low light and sidewall packing for light avoidance. We present a theoretical model using random close packing simulations of polydispersed hard disks in rectangular boxes and find optimal cell shapes that match plant cell measurements. Our findings highlight how particle packing principles under confinement enable light adaptation in plants, offering insights into organelle organization under confinement, a physical challenge relevant across biological systems.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"122 43","pages":"e2511696122"},"PeriodicalIF":9.1000,"publicationDate":"2025-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal disk packing of chloroplasts in plant cells.\",\"authors\":\"Nico Schramma, Eric R Weeks, Maziyar Jalaal\",\"doi\":\"10.1073/pnas.2511696122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Photosynthesis is essential for ecosystem survival, but while plants require light, excessive exposure can damage cells. Chloroplasts, photosynthetic organelles, respond via self-organized motion within cells to optimize light absorption. These disk-shaped organelles must balance two competing needs: dense packing to enhance absorption under dim light and rapid spatial rearrangement to avoid damage from excess light. Using microscopy, we show that plant cell shape and chloroplast size achieve both goals: dense monolayer packing for optimal absorption in low light and sidewall packing for light avoidance. We present a theoretical model using random close packing simulations of polydispersed hard disks in rectangular boxes and find optimal cell shapes that match plant cell measurements. Our findings highlight how particle packing principles under confinement enable light adaptation in plants, offering insights into organelle organization under confinement, a physical challenge relevant across biological systems.</p>\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":\"122 43\",\"pages\":\"e2511696122\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2511696122\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/10/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2511696122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/10/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

光合作用对生态系统的生存至关重要,但植物需要光,过度暴露会损害细胞。叶绿体,光合细胞器,通过细胞内的自组织运动来优化光吸收。这些圆盘状的细胞器必须平衡两个相互竞争的需求:密集的包装以增强弱光下的吸收,快速的空间重排以避免过度的光损害。利用显微镜,我们发现植物细胞的形状和叶绿体的大小实现了两个目标:致密的单层包装在弱光下的最佳吸收和侧壁包装的避光。我们提出了一个理论模型,使用矩形盒中多分散硬盘的随机紧密包装模拟,并找到与植物细胞测量相匹配的最佳细胞形状。我们的研究结果强调了禁闭下的颗粒包装原理如何使植物适应光,为禁闭下的细胞器组织提供了见解,这是一个与生物系统相关的物理挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal disk packing of chloroplasts in plant cells.

Photosynthesis is essential for ecosystem survival, but while plants require light, excessive exposure can damage cells. Chloroplasts, photosynthetic organelles, respond via self-organized motion within cells to optimize light absorption. These disk-shaped organelles must balance two competing needs: dense packing to enhance absorption under dim light and rapid spatial rearrangement to avoid damage from excess light. Using microscopy, we show that plant cell shape and chloroplast size achieve both goals: dense monolayer packing for optimal absorption in low light and sidewall packing for light avoidance. We present a theoretical model using random close packing simulations of polydispersed hard disks in rectangular boxes and find optimal cell shapes that match plant cell measurements. Our findings highlight how particle packing principles under confinement enable light adaptation in plants, offering insights into organelle organization under confinement, a physical challenge relevant across biological systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信