{"title":"植物细胞中叶绿体的最佳圆盘包装。","authors":"Nico Schramma, Eric R Weeks, Maziyar Jalaal","doi":"10.1073/pnas.2511696122","DOIUrl":null,"url":null,"abstract":"<p><p>Photosynthesis is essential for ecosystem survival, but while plants require light, excessive exposure can damage cells. Chloroplasts, photosynthetic organelles, respond via self-organized motion within cells to optimize light absorption. These disk-shaped organelles must balance two competing needs: dense packing to enhance absorption under dim light and rapid spatial rearrangement to avoid damage from excess light. Using microscopy, we show that plant cell shape and chloroplast size achieve both goals: dense monolayer packing for optimal absorption in low light and sidewall packing for light avoidance. We present a theoretical model using random close packing simulations of polydispersed hard disks in rectangular boxes and find optimal cell shapes that match plant cell measurements. Our findings highlight how particle packing principles under confinement enable light adaptation in plants, offering insights into organelle organization under confinement, a physical challenge relevant across biological systems.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"122 43","pages":"e2511696122"},"PeriodicalIF":9.1000,"publicationDate":"2025-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal disk packing of chloroplasts in plant cells.\",\"authors\":\"Nico Schramma, Eric R Weeks, Maziyar Jalaal\",\"doi\":\"10.1073/pnas.2511696122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Photosynthesis is essential for ecosystem survival, but while plants require light, excessive exposure can damage cells. Chloroplasts, photosynthetic organelles, respond via self-organized motion within cells to optimize light absorption. These disk-shaped organelles must balance two competing needs: dense packing to enhance absorption under dim light and rapid spatial rearrangement to avoid damage from excess light. Using microscopy, we show that plant cell shape and chloroplast size achieve both goals: dense monolayer packing for optimal absorption in low light and sidewall packing for light avoidance. We present a theoretical model using random close packing simulations of polydispersed hard disks in rectangular boxes and find optimal cell shapes that match plant cell measurements. Our findings highlight how particle packing principles under confinement enable light adaptation in plants, offering insights into organelle organization under confinement, a physical challenge relevant across biological systems.</p>\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":\"122 43\",\"pages\":\"e2511696122\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2511696122\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/10/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2511696122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/10/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Optimal disk packing of chloroplasts in plant cells.
Photosynthesis is essential for ecosystem survival, but while plants require light, excessive exposure can damage cells. Chloroplasts, photosynthetic organelles, respond via self-organized motion within cells to optimize light absorption. These disk-shaped organelles must balance two competing needs: dense packing to enhance absorption under dim light and rapid spatial rearrangement to avoid damage from excess light. Using microscopy, we show that plant cell shape and chloroplast size achieve both goals: dense monolayer packing for optimal absorption in low light and sidewall packing for light avoidance. We present a theoretical model using random close packing simulations of polydispersed hard disks in rectangular boxes and find optimal cell shapes that match plant cell measurements. Our findings highlight how particle packing principles under confinement enable light adaptation in plants, offering insights into organelle organization under confinement, a physical challenge relevant across biological systems.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.