Kejia Li, Han Dai, Ke Li, Sheng Qiu, Dongfang Liu, Cong Wang, Shengbin Li, Gangyi Yang, Ling Li, Min-Dian Li, Mengliu Yang
{"title":"中枢胰岛素增敏剂FSTL1逆转饮食引起的肥胖","authors":"Kejia Li, Han Dai, Ke Li, Sheng Qiu, Dongfang Liu, Cong Wang, Shengbin Li, Gangyi Yang, Ling Li, Min-Dian Li, Mengliu Yang","doi":"10.1016/j.neuron.2025.09.036","DOIUrl":null,"url":null,"abstract":"<p><p>Follistatin-like 1 (FSTL1) is a signaling molecule that modulates energy metabolism in peripheral tissues and is also expressed in the brain. However, whether hypothalamic FSTL1 regulates carbohydrate/lipid metabolism and energy balance remains unknown. Here, we show that FSTL1 is enriched in the hypothalamus, especially the arcuate nucleus (ARC). FSTL1 expression is decreased in diet-induced obese (DIO) and db/db mice. Agouti-related peptide (AgRP) neuron-specific Fstl1 deletion increased food intake, decreased energy expenditure, and impaired insulin sensitivity in DIO mice. Conversely, Fstl1 overexpression in AgRP neurons resulted in the opposite phenotypes. Insulin signaling was required for the anti-obesity effect of hypothalamic FSTL1. Intranasal FSTL1 delivery promoted weight loss and improved insulin sensitivity in DIO mice. Mechanistically, FSTL1 interacts with Akt, an intracellular mediator of insulin signaling, to inhibit forkhead box protein O1 (FoxO1) nuclear translocation. Our findings identify hypothalamic FSTL1 as a key mediator counteracting DIO and provide a potential pharmacological strategy for obesity-related metabolic disorders.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":""},"PeriodicalIF":15.0000,"publicationDate":"2025-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reversal of diet-induced obesity by central insulin sensitizer FSTL1.\",\"authors\":\"Kejia Li, Han Dai, Ke Li, Sheng Qiu, Dongfang Liu, Cong Wang, Shengbin Li, Gangyi Yang, Ling Li, Min-Dian Li, Mengliu Yang\",\"doi\":\"10.1016/j.neuron.2025.09.036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Follistatin-like 1 (FSTL1) is a signaling molecule that modulates energy metabolism in peripheral tissues and is also expressed in the brain. However, whether hypothalamic FSTL1 regulates carbohydrate/lipid metabolism and energy balance remains unknown. Here, we show that FSTL1 is enriched in the hypothalamus, especially the arcuate nucleus (ARC). FSTL1 expression is decreased in diet-induced obese (DIO) and db/db mice. Agouti-related peptide (AgRP) neuron-specific Fstl1 deletion increased food intake, decreased energy expenditure, and impaired insulin sensitivity in DIO mice. Conversely, Fstl1 overexpression in AgRP neurons resulted in the opposite phenotypes. Insulin signaling was required for the anti-obesity effect of hypothalamic FSTL1. Intranasal FSTL1 delivery promoted weight loss and improved insulin sensitivity in DIO mice. Mechanistically, FSTL1 interacts with Akt, an intracellular mediator of insulin signaling, to inhibit forkhead box protein O1 (FoxO1) nuclear translocation. Our findings identify hypothalamic FSTL1 as a key mediator counteracting DIO and provide a potential pharmacological strategy for obesity-related metabolic disorders.</p>\",\"PeriodicalId\":19313,\"journal\":{\"name\":\"Neuron\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":15.0000,\"publicationDate\":\"2025-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuron\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.neuron.2025.09.036\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuron","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuron.2025.09.036","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Reversal of diet-induced obesity by central insulin sensitizer FSTL1.
Follistatin-like 1 (FSTL1) is a signaling molecule that modulates energy metabolism in peripheral tissues and is also expressed in the brain. However, whether hypothalamic FSTL1 regulates carbohydrate/lipid metabolism and energy balance remains unknown. Here, we show that FSTL1 is enriched in the hypothalamus, especially the arcuate nucleus (ARC). FSTL1 expression is decreased in diet-induced obese (DIO) and db/db mice. Agouti-related peptide (AgRP) neuron-specific Fstl1 deletion increased food intake, decreased energy expenditure, and impaired insulin sensitivity in DIO mice. Conversely, Fstl1 overexpression in AgRP neurons resulted in the opposite phenotypes. Insulin signaling was required for the anti-obesity effect of hypothalamic FSTL1. Intranasal FSTL1 delivery promoted weight loss and improved insulin sensitivity in DIO mice. Mechanistically, FSTL1 interacts with Akt, an intracellular mediator of insulin signaling, to inhibit forkhead box protein O1 (FoxO1) nuclear translocation. Our findings identify hypothalamic FSTL1 as a key mediator counteracting DIO and provide a potential pharmacological strategy for obesity-related metabolic disorders.
期刊介绍:
Established as a highly influential journal in neuroscience, Neuron is widely relied upon in the field. The editors adopt interdisciplinary strategies, integrating biophysical, cellular, developmental, and molecular approaches alongside a systems approach to sensory, motor, and higher-order cognitive functions. Serving as a premier intellectual forum, Neuron holds a prominent position in the entire neuroscience community.