磁矢量断层扫描显示,巨型磁化石的磁强度接收是优化的。

IF 8.9 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Communications Earth & Environment Pub Date : 2025-01-01 Epub Date: 2025-10-20 DOI:10.1038/s43247-025-02721-3
Richard J Harrison, Jeffrey Neethirajan, Zhaowen Pei, Pengfei Xue, Lourdes Marcano, Radu Abrudan, Emilie Ringe, Po-Yen Tung, Venkata S C Kuppili, Burkhard Kaulich, Benedikt J Daurer, Luis Carlos Colocho Hurtarte, Majid Kazemian, Liao Chang, Claire Donnelly, Sergio Valencia
{"title":"磁矢量断层扫描显示,巨型磁化石的磁强度接收是优化的。","authors":"Richard J Harrison, Jeffrey Neethirajan, Zhaowen Pei, Pengfei Xue, Lourdes Marcano, Radu Abrudan, Emilie Ringe, Po-Yen Tung, Venkata S C Kuppili, Burkhard Kaulich, Benedikt J Daurer, Luis Carlos Colocho Hurtarte, Majid Kazemian, Liao Chang, Claire Donnelly, Sergio Valencia","doi":"10.1038/s43247-025-02721-3","DOIUrl":null,"url":null,"abstract":"<p><p>Giant magnetofossils are unusual, micron-sized biogenic magnetite particles found in sediments dating back at least 97 million years. Their distinctive morphologies are the product of biologically controlled mineralisation, yet the identity of their biomineralising organism, and the biological function they serve, remain a mystery. It is currently thought that the organism exploited magnetite's mechanical properties for protection. Here we explore an alternative hypothesis, that it exploited magnetite's magnetic properties for the purpose of magnetoreception. We present a three-dimensional magnetic vector tomography study of a giant magnetofossil and assess its magnetoreceptive potential. Our results reveal a single magnetic vortex that displays an optimised response to spatial variations in the intensity of Earth's magnetic field. This magnetic trait may have conferred an evolutionary advantage to mobile marine organisms, providing an upper age limit on the development of navigational magnetoreception and raising the possibility that earlier evidence of this sense may yet be preserved in the fossil record. More broadly, this work provides a blueprint for assessing the morphological and magnetic evidence for putative biogenic iron oxide particles, which are a key component in the search for early life on Earth and Mars.</p>","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":"6 1","pages":"810"},"PeriodicalIF":8.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12537488/pdf/","citationCount":"0","resultStr":"{\"title\":\"Magnetic vector tomography reveals giant magnetofossils are optimised for magnetointensity reception.\",\"authors\":\"Richard J Harrison, Jeffrey Neethirajan, Zhaowen Pei, Pengfei Xue, Lourdes Marcano, Radu Abrudan, Emilie Ringe, Po-Yen Tung, Venkata S C Kuppili, Burkhard Kaulich, Benedikt J Daurer, Luis Carlos Colocho Hurtarte, Majid Kazemian, Liao Chang, Claire Donnelly, Sergio Valencia\",\"doi\":\"10.1038/s43247-025-02721-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Giant magnetofossils are unusual, micron-sized biogenic magnetite particles found in sediments dating back at least 97 million years. Their distinctive morphologies are the product of biologically controlled mineralisation, yet the identity of their biomineralising organism, and the biological function they serve, remain a mystery. It is currently thought that the organism exploited magnetite's mechanical properties for protection. Here we explore an alternative hypothesis, that it exploited magnetite's magnetic properties for the purpose of magnetoreception. We present a three-dimensional magnetic vector tomography study of a giant magnetofossil and assess its magnetoreceptive potential. Our results reveal a single magnetic vortex that displays an optimised response to spatial variations in the intensity of Earth's magnetic field. This magnetic trait may have conferred an evolutionary advantage to mobile marine organisms, providing an upper age limit on the development of navigational magnetoreception and raising the possibility that earlier evidence of this sense may yet be preserved in the fossil record. More broadly, this work provides a blueprint for assessing the morphological and magnetic evidence for putative biogenic iron oxide particles, which are a key component in the search for early life on Earth and Mars.</p>\",\"PeriodicalId\":10530,\"journal\":{\"name\":\"Communications Earth & Environment\",\"volume\":\"6 1\",\"pages\":\"810\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12537488/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Earth & Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1038/s43247-025-02721-3\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/10/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Earth & Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1038/s43247-025-02721-3","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/10/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

巨型磁化石是不寻常的,微米大小的生物磁铁矿颗粒,发现于至少9700万年前的沉积物中。它们独特的形态是生物控制矿化的产物,然而它们的生物矿化有机体的身份,以及它们所服务的生物学功能,仍然是一个谜。目前认为,这种生物利用了磁铁矿的机械特性来保护自己。在这里,我们探索另一种假设,它利用磁铁矿的磁性为目的的磁接收。我们提出了一个巨型磁化石的三维磁矢量断层扫描研究,并评估其磁感受电位。我们的研究结果揭示了一个单一的磁涡流,它对地球磁场强度的空间变化表现出优化的响应。这种磁性特征可能赋予了移动的海洋生物一种进化优势,为导航磁感应的发展提供了一个年龄上限,并提高了这种感觉的早期证据可能在化石记录中被保存下来的可能性。更广泛地说,这项工作为评估假定的生物氧化铁颗粒的形态和磁性证据提供了蓝图,这是寻找地球和火星早期生命的关键组成部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Magnetic vector tomography reveals giant magnetofossils are optimised for magnetointensity reception.

Giant magnetofossils are unusual, micron-sized biogenic magnetite particles found in sediments dating back at least 97 million years. Their distinctive morphologies are the product of biologically controlled mineralisation, yet the identity of their biomineralising organism, and the biological function they serve, remain a mystery. It is currently thought that the organism exploited magnetite's mechanical properties for protection. Here we explore an alternative hypothesis, that it exploited magnetite's magnetic properties for the purpose of magnetoreception. We present a three-dimensional magnetic vector tomography study of a giant magnetofossil and assess its magnetoreceptive potential. Our results reveal a single magnetic vortex that displays an optimised response to spatial variations in the intensity of Earth's magnetic field. This magnetic trait may have conferred an evolutionary advantage to mobile marine organisms, providing an upper age limit on the development of navigational magnetoreception and raising the possibility that earlier evidence of this sense may yet be preserved in the fossil record. More broadly, this work provides a blueprint for assessing the morphological and magnetic evidence for putative biogenic iron oxide particles, which are a key component in the search for early life on Earth and Mars.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Earth & Environment
Communications Earth & Environment Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
8.60
自引率
2.50%
发文量
269
审稿时长
26 weeks
期刊介绍: Communications Earth & Environment is an open access journal from Nature Portfolio publishing high-quality research, reviews and commentary in all areas of the Earth, environmental and planetary sciences. Research papers published by the journal represent significant advances that bring new insight to a specialized area in Earth science, planetary science or environmental science. Communications Earth & Environment has a 2-year impact factor of 7.9 (2022 Journal Citation Reports®). Articles published in the journal in 2022 were downloaded 1,412,858 times. Median time from submission to the first editorial decision is 8 days.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信