从寿命结束的太阳能电池板中可持续回收硅,用于下一代锂离子电池阳极和具有稳健循环寿命的电容器。

IF 6.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-10-21 DOI:10.1002/cssc.202501921
Manohar Akshay, Shaji Gayathri, Kadam Vikram Ravindra, Yun-Sung Lee, Vanchiappan Aravindan
{"title":"从寿命结束的太阳能电池板中可持续回收硅,用于下一代锂离子电池阳极和具有稳健循环寿命的电容器。","authors":"Manohar Akshay, Shaji Gayathri, Kadam Vikram Ravindra, Yun-Sung Lee, Vanchiappan Aravindan","doi":"10.1002/cssc.202501921","DOIUrl":null,"url":null,"abstract":"<p><p>Lithium-based energy storage devices such as lithium-ion batteries (LIBs) and lithium-ion capacitors (LICs) are efficient and widely used electrochemical energy storage technologies. However, these lack an anode with high practical capacity/energy density to store energy for a long period. Herein, a combined intercalation and alloying mechanism is introduced in the anode to enhance the specific capacity and energy density without compromising cycling performance. The work explores graphite with recovered silicon (from discarded solar panels) as an anode for both LIBs and LICs. The commercial graphite-recovered silicon (CG-Si) composite displays better electrochemical performance than the pristine graphite, as it is observed that even 5 wt.% of silicon can increase the specific capacity over 150 mAh g<sup>-1</sup>. The LIB fabricated with CG(95):Si(5) composite as anode and lithium manganese oxide (LiMn<sub>2</sub>O<sub>4</sub>) cathode exhibits a maximum energy density of 242 Wh kg<sup>-1</sup> with stable cycling performance for more than 750 cycles. On the other hand, the LIC with the same anode and activated carbon cathode displays a maximum energy density of 196 Wh kg<sup>-1</sup> with stable cycling performance over 10,000 cycles. Above all, both LIB and LIC are adaptable and display excellent electrochemical performance at various climatic conditions.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202501921"},"PeriodicalIF":6.6000,"publicationDate":"2025-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sustainable Recovery of Silicon from End-of-Life Solar Panels for Next-Generation Anodes in Lithium-Ion Batteries and Capacitors with Robust Cycle Life.\",\"authors\":\"Manohar Akshay, Shaji Gayathri, Kadam Vikram Ravindra, Yun-Sung Lee, Vanchiappan Aravindan\",\"doi\":\"10.1002/cssc.202501921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lithium-based energy storage devices such as lithium-ion batteries (LIBs) and lithium-ion capacitors (LICs) are efficient and widely used electrochemical energy storage technologies. However, these lack an anode with high practical capacity/energy density to store energy for a long period. Herein, a combined intercalation and alloying mechanism is introduced in the anode to enhance the specific capacity and energy density without compromising cycling performance. The work explores graphite with recovered silicon (from discarded solar panels) as an anode for both LIBs and LICs. The commercial graphite-recovered silicon (CG-Si) composite displays better electrochemical performance than the pristine graphite, as it is observed that even 5 wt.% of silicon can increase the specific capacity over 150 mAh g<sup>-1</sup>. The LIB fabricated with CG(95):Si(5) composite as anode and lithium manganese oxide (LiMn<sub>2</sub>O<sub>4</sub>) cathode exhibits a maximum energy density of 242 Wh kg<sup>-1</sup> with stable cycling performance for more than 750 cycles. On the other hand, the LIC with the same anode and activated carbon cathode displays a maximum energy density of 196 Wh kg<sup>-1</sup> with stable cycling performance over 10,000 cycles. Above all, both LIB and LIC are adaptable and display excellent electrochemical performance at various climatic conditions.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e202501921\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202501921\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202501921","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

锂离子电池(LIBs)和锂离子电容器(lic)等锂基储能装置是一种高效且应用广泛的电化学储能技术。然而,它们缺乏具有高实用容量/能量密度的阳极来长时间储存能量。在阳极中引入嵌入和合金化相结合的机制,在不影响循环性能的情况下提高比容量和能量密度。这项工作探索了石墨与回收硅(从废弃的太阳能电池板中)作为锂离子电池和锂离子电池的阳极。商业石墨-回收硅(CG-Si)复合材料显示出比原始石墨更好的电化学性能,因为观察到即使5wt。%的硅可以增加比容量超过150毫安时g-1。以CG(95):Si(5)复合材料为阳极,锂锰氧化物(LiMn2O4)为阴极制备的锂离子电池最大能量密度为242 Wh kg-1,循环性能稳定,循环次数超过750次。另一方面,具有相同阳极和活性炭阴极的LIC显示出最大能量密度为196 Wh kg-1,并且在10,000次循环中具有稳定的循环性能。最重要的是,LIB和LIC都具有适应性,在各种气候条件下都表现出优异的电化学性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sustainable Recovery of Silicon from End-of-Life Solar Panels for Next-Generation Anodes in Lithium-Ion Batteries and Capacitors with Robust Cycle Life.

Lithium-based energy storage devices such as lithium-ion batteries (LIBs) and lithium-ion capacitors (LICs) are efficient and widely used electrochemical energy storage technologies. However, these lack an anode with high practical capacity/energy density to store energy for a long period. Herein, a combined intercalation and alloying mechanism is introduced in the anode to enhance the specific capacity and energy density without compromising cycling performance. The work explores graphite with recovered silicon (from discarded solar panels) as an anode for both LIBs and LICs. The commercial graphite-recovered silicon (CG-Si) composite displays better electrochemical performance than the pristine graphite, as it is observed that even 5 wt.% of silicon can increase the specific capacity over 150 mAh g-1. The LIB fabricated with CG(95):Si(5) composite as anode and lithium manganese oxide (LiMn2O4) cathode exhibits a maximum energy density of 242 Wh kg-1 with stable cycling performance for more than 750 cycles. On the other hand, the LIC with the same anode and activated carbon cathode displays a maximum energy density of 196 Wh kg-1 with stable cycling performance over 10,000 cycles. Above all, both LIB and LIC are adaptable and display excellent electrochemical performance at various climatic conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信