Joe Tavacoli, Andris P Stikuts, Mihir Dass, Tim Liedl, Pietro Tierno
{"title":"柔性磁微十字的可调动力学:同步旋转、呼吸和离面臂超车。","authors":"Joe Tavacoli, Andris P Stikuts, Mihir Dass, Tim Liedl, Pietro Tierno","doi":"10.1039/d5sm00772k","DOIUrl":null,"url":null,"abstract":"<p><p>We combine colloidal self-assembly and soft-lithography techniques to realize flexible magnetic microcrosses that can be manipulated <i>via</i> external, time dependent magnetic fields. The crosses are characterized by a central domain connected <i>via</i> four flexible arms. When subjected to an in-plane, rotating magnetic field, the crosses transit from a synchronous to an asynchronous spinning motion where their average rotation decreases with the driving frequency. In the asynchronous regime and at low field amplitudes, the crosses display a breathing mode, characterized by relative oscillations between the arms, while remaining localized in the two dimensional plane. In contrast, for high field amplitudes, we observe an arm overtaking regime where two opposite filaments surpass the remaining ones forcing the cross to perform a three-dimensional gyroscopic-like rotation. Using slender body theory and balancing the effect of magnetic and elastic interactions, we recover the experimental findings and show that the overtaking regime occurs due to different arm magnetizations. Our engineered microscopic colloidal rotors characterized by multiple flexible filaments may find potential applications for precise lab-on-a-chip operations or as stirrers dispersed within microfluidic or biological channels.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tunable dynamics of flexible magnetic microcrosses: synchronous rotation, breathing and out-of-plane arm overtaking.\",\"authors\":\"Joe Tavacoli, Andris P Stikuts, Mihir Dass, Tim Liedl, Pietro Tierno\",\"doi\":\"10.1039/d5sm00772k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We combine colloidal self-assembly and soft-lithography techniques to realize flexible magnetic microcrosses that can be manipulated <i>via</i> external, time dependent magnetic fields. The crosses are characterized by a central domain connected <i>via</i> four flexible arms. When subjected to an in-plane, rotating magnetic field, the crosses transit from a synchronous to an asynchronous spinning motion where their average rotation decreases with the driving frequency. In the asynchronous regime and at low field amplitudes, the crosses display a breathing mode, characterized by relative oscillations between the arms, while remaining localized in the two dimensional plane. In contrast, for high field amplitudes, we observe an arm overtaking regime where two opposite filaments surpass the remaining ones forcing the cross to perform a three-dimensional gyroscopic-like rotation. Using slender body theory and balancing the effect of magnetic and elastic interactions, we recover the experimental findings and show that the overtaking regime occurs due to different arm magnetizations. Our engineered microscopic colloidal rotors characterized by multiple flexible filaments may find potential applications for precise lab-on-a-chip operations or as stirrers dispersed within microfluidic or biological channels.</p>\",\"PeriodicalId\":103,\"journal\":{\"name\":\"Soft Matter\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soft Matter\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d5sm00772k\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5sm00772k","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Tunable dynamics of flexible magnetic microcrosses: synchronous rotation, breathing and out-of-plane arm overtaking.
We combine colloidal self-assembly and soft-lithography techniques to realize flexible magnetic microcrosses that can be manipulated via external, time dependent magnetic fields. The crosses are characterized by a central domain connected via four flexible arms. When subjected to an in-plane, rotating magnetic field, the crosses transit from a synchronous to an asynchronous spinning motion where their average rotation decreases with the driving frequency. In the asynchronous regime and at low field amplitudes, the crosses display a breathing mode, characterized by relative oscillations between the arms, while remaining localized in the two dimensional plane. In contrast, for high field amplitudes, we observe an arm overtaking regime where two opposite filaments surpass the remaining ones forcing the cross to perform a three-dimensional gyroscopic-like rotation. Using slender body theory and balancing the effect of magnetic and elastic interactions, we recover the experimental findings and show that the overtaking regime occurs due to different arm magnetizations. Our engineered microscopic colloidal rotors characterized by multiple flexible filaments may find potential applications for precise lab-on-a-chip operations or as stirrers dispersed within microfluidic or biological channels.
期刊介绍:
Soft Matter is an international journal published by the Royal Society of Chemistry using Engineering-Materials Science: A Synthesis as its research focus. It publishes original research articles, review articles, and synthesis articles related to this field, reporting the latest discoveries in the relevant theoretical, practical, and applied disciplines in a timely manner, and aims to promote the rapid exchange of scientific information in this subject area. The journal is an open access journal. The journal is an open access journal and has not been placed on the alert list in the last three years.