Kröhnkite-type Na2Mn(SO4)2(H2O)2:第一性原理分析、热演化及应用前景

IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jacivan V. Marques, João G. de Oliveira Neto, Djany S. Silva, Walajhone O. Pereira, José G. da Silva Filho, Francisco F. de Sousa, Adenilson O. dos Santos, Rossano Lang
{"title":"Kröhnkite-type Na2Mn(SO4)2(H2O)2:第一性原理分析、热演化及应用前景","authors":"Jacivan V. Marques,&nbsp;João G. de Oliveira Neto,&nbsp;Djany S. Silva,&nbsp;Walajhone O. Pereira,&nbsp;José G. da Silva Filho,&nbsp;Francisco F. de Sousa,&nbsp;Adenilson O. dos Santos,&nbsp;Rossano Lang","doi":"10.1007/s10853-025-11615-w","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents an extensive investigation into Na<sub>2</sub>Mn(SO<sub>4</sub>)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub> crystal, combining experimental techniques, first-principles calculations based on the density-functional perturbation theory (DFPT), and computational tools using CrystalExplorer software to examine structure, intermolecular interactions, thermal stability, chemical transformations/phase transitions, normal vibration modes, possible applications, among others. The double salt crystallizes in a monoclinic symmetry (<i>P</i>2<sub>1</sub>/<i>c</i>), characteristic of D-subtype kröhnkite-family salts. Ion–dipole interactions and hydrogen bonding stabilize the crystal structure and feature a void volume of ≈ 3.7%. Thermal analysis and temperature-dependent X-ray diffraction reveal that the structure remains thermally stable between 300 and ≈ 400 K, beyond which dehydration occurs. Although Na<sub>2</sub>Mn(SO<sub>4</sub>)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub> exhibits a high dehydration enthalpy (79.8 kJ/H<sub>2</sub>O mol), it shows no structural reversibility (rehydration) after 24 h under open system conditions (H<sub>2</sub>O vapor was supplied by atmospheric air), indicating limitations for thermochemical heat storage applications. At high temperatures (&gt; 480 K), complex phase transitions give rise to predominantly anhydrous crystalline phases, including vanthoffite-type Na<sub>6</sub>Mn(SO<sub>4</sub>)<sub>4</sub> (<i>P</i>2<sub>1</sub>/<i>c</i>), Na<sub>2</sub>Mn<sub>3</sub>(SO<sub>4</sub>)<sub>4</sub> (<i>Cmc</i>2<sub>1</sub>), and Na<sub>2.74</sub>Mn<sub>1.86</sub>(SO<sub>4</sub>)<sub>3</sub> (<i>P</i>2<sub>1</sub>/<i>c</i>). Several optical phonon modes from Na<sub>2</sub>Mn(SO<sub>4</sub>)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub> were identified through FT-IR and Raman spectroscopy and accurately assigned using DFPT calculations. Optical measurements depict a wide energy gap of ≈ 5.67 eV (≈ 219 nm), demonstrating an insulating nature of the crystal. Conversely, fluorescence spectra show a dual-band emission at 567 and 617 nm, corresponding to Mn<sup>2+</sup> ions in four- and sixfold coordination, respectively. Crystal-field strength, as well as the Racah parameters B and C, were also determined via Tanabe–Sugano energy-level diagram, offering insights into the ligand-field environment of Mn<sup>2+</sup> ions in the structure. A near-ideal white light (CCT = 5230 K) is achieved by combining the emission of the crystal with a blue LED (<i>λ</i> = 406 nm), which is also used as the excitation source. While this fluorescent behavior is promising, further studies are needed to assess the internal quantum efficiency for phosphor applications. Nevertheless, the findings underscore the potential of double salt structure as a host matrix for light-emitting materials (emissive dopant incorporation), expanding the functional perspectives of kröhnkite-based compounds.</p></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"60 42","pages":"20482 - 20513"},"PeriodicalIF":3.9000,"publicationDate":"2025-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kröhnkite-type Na2Mn(SO4)2(H2O)2: first-principles analysis, thermal evolution, and application prospects\",\"authors\":\"Jacivan V. Marques,&nbsp;João G. de Oliveira Neto,&nbsp;Djany S. Silva,&nbsp;Walajhone O. Pereira,&nbsp;José G. da Silva Filho,&nbsp;Francisco F. de Sousa,&nbsp;Adenilson O. dos Santos,&nbsp;Rossano Lang\",\"doi\":\"10.1007/s10853-025-11615-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents an extensive investigation into Na<sub>2</sub>Mn(SO<sub>4</sub>)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub> crystal, combining experimental techniques, first-principles calculations based on the density-functional perturbation theory (DFPT), and computational tools using CrystalExplorer software to examine structure, intermolecular interactions, thermal stability, chemical transformations/phase transitions, normal vibration modes, possible applications, among others. The double salt crystallizes in a monoclinic symmetry (<i>P</i>2<sub>1</sub>/<i>c</i>), characteristic of D-subtype kröhnkite-family salts. Ion–dipole interactions and hydrogen bonding stabilize the crystal structure and feature a void volume of ≈ 3.7%. Thermal analysis and temperature-dependent X-ray diffraction reveal that the structure remains thermally stable between 300 and ≈ 400 K, beyond which dehydration occurs. Although Na<sub>2</sub>Mn(SO<sub>4</sub>)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub> exhibits a high dehydration enthalpy (79.8 kJ/H<sub>2</sub>O mol), it shows no structural reversibility (rehydration) after 24 h under open system conditions (H<sub>2</sub>O vapor was supplied by atmospheric air), indicating limitations for thermochemical heat storage applications. At high temperatures (&gt; 480 K), complex phase transitions give rise to predominantly anhydrous crystalline phases, including vanthoffite-type Na<sub>6</sub>Mn(SO<sub>4</sub>)<sub>4</sub> (<i>P</i>2<sub>1</sub>/<i>c</i>), Na<sub>2</sub>Mn<sub>3</sub>(SO<sub>4</sub>)<sub>4</sub> (<i>Cmc</i>2<sub>1</sub>), and Na<sub>2.74</sub>Mn<sub>1.86</sub>(SO<sub>4</sub>)<sub>3</sub> (<i>P</i>2<sub>1</sub>/<i>c</i>). Several optical phonon modes from Na<sub>2</sub>Mn(SO<sub>4</sub>)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub> were identified through FT-IR and Raman spectroscopy and accurately assigned using DFPT calculations. Optical measurements depict a wide energy gap of ≈ 5.67 eV (≈ 219 nm), demonstrating an insulating nature of the crystal. Conversely, fluorescence spectra show a dual-band emission at 567 and 617 nm, corresponding to Mn<sup>2+</sup> ions in four- and sixfold coordination, respectively. Crystal-field strength, as well as the Racah parameters B and C, were also determined via Tanabe–Sugano energy-level diagram, offering insights into the ligand-field environment of Mn<sup>2+</sup> ions in the structure. A near-ideal white light (CCT = 5230 K) is achieved by combining the emission of the crystal with a blue LED (<i>λ</i> = 406 nm), which is also used as the excitation source. While this fluorescent behavior is promising, further studies are needed to assess the internal quantum efficiency for phosphor applications. Nevertheless, the findings underscore the potential of double salt structure as a host matrix for light-emitting materials (emissive dopant incorporation), expanding the functional perspectives of kröhnkite-based compounds.</p></div>\",\"PeriodicalId\":645,\"journal\":{\"name\":\"Journal of Materials Science\",\"volume\":\"60 42\",\"pages\":\"20482 - 20513\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10853-025-11615-w\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-025-11615-w","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了对Na2Mn(SO4)2(H2O)2晶体的广泛研究,结合实验技术,基于密度泛函数摄动理论(DFPT)的第一性原理计算,以及使用CrystalExplorer软件的计算工具来检查结构,分子间相互作用,热稳定性,化学转化/相变,正常振动模式,可能的应用等。双盐以单斜对称(P21/c)结晶,这是d亚型kröhnkite-family盐的特征。离子-偶极子相互作用和氢键作用稳定了晶体结构,孔隙体积≈3.7%。热分析和温度相关的x射线衍射表明,该结构在300 ~≈400 K之间保持热稳定,超过该温度会发生脱水。尽管Na2Mn(SO4)2(H2O)2表现出较高的脱水焓(79.8 kJ/H2O mol),但在开放体系条件下(H2O蒸汽由大气提供)24h后,Na2Mn(SO4)2(H2O)2没有表现出结构可逆性(再水化),表明热化学储热应用的局限性。在高温下(> 480 K),复杂的相变产生以无水为主的晶相,包括钒辉石型Na6Mn(SO4)4 (P21/c)、Na2Mn3(SO4)4 (Cmc21)和Na2.74Mn1.86(SO4)3 (P21/c)。通过FT-IR和拉曼光谱鉴定了Na2Mn(SO4)2(H2O)2的几种光学声子模式,并使用DFPT计算进行了精确分配。光学测量描述了约5.67 eV(约219 nm)的宽能隙,证明了晶体的绝缘性质。相反,荧光光谱在567和617 nm处显示双频发射,分别对应于四重配位和六重配位的Mn2+离子。通过Tanabe-Sugano能级图确定了晶体场强度以及Racah参数B和C,从而深入了解了结构中Mn2+离子的配体场环境。通过将晶体的发射与蓝色LED (λ = 406 nm)相结合,获得了接近理想的白光(CCT = 5230 K),该LED也用作激发源。虽然这种荧光行为是有希望的,但需要进一步的研究来评估荧光粉应用的内部量子效率。然而,这些发现强调了双盐结构作为发光材料(发射掺杂剂掺入)主体基质的潜力,扩展了kröhnkite-based化合物的功能视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kröhnkite-type Na2Mn(SO4)2(H2O)2: first-principles analysis, thermal evolution, and application prospects

This paper presents an extensive investigation into Na2Mn(SO4)2(H2O)2 crystal, combining experimental techniques, first-principles calculations based on the density-functional perturbation theory (DFPT), and computational tools using CrystalExplorer software to examine structure, intermolecular interactions, thermal stability, chemical transformations/phase transitions, normal vibration modes, possible applications, among others. The double salt crystallizes in a monoclinic symmetry (P21/c), characteristic of D-subtype kröhnkite-family salts. Ion–dipole interactions and hydrogen bonding stabilize the crystal structure and feature a void volume of ≈ 3.7%. Thermal analysis and temperature-dependent X-ray diffraction reveal that the structure remains thermally stable between 300 and ≈ 400 K, beyond which dehydration occurs. Although Na2Mn(SO4)2(H2O)2 exhibits a high dehydration enthalpy (79.8 kJ/H2O mol), it shows no structural reversibility (rehydration) after 24 h under open system conditions (H2O vapor was supplied by atmospheric air), indicating limitations for thermochemical heat storage applications. At high temperatures (> 480 K), complex phase transitions give rise to predominantly anhydrous crystalline phases, including vanthoffite-type Na6Mn(SO4)4 (P21/c), Na2Mn3(SO4)4 (Cmc21), and Na2.74Mn1.86(SO4)3 (P21/c). Several optical phonon modes from Na2Mn(SO4)2(H2O)2 were identified through FT-IR and Raman spectroscopy and accurately assigned using DFPT calculations. Optical measurements depict a wide energy gap of ≈ 5.67 eV (≈ 219 nm), demonstrating an insulating nature of the crystal. Conversely, fluorescence spectra show a dual-band emission at 567 and 617 nm, corresponding to Mn2+ ions in four- and sixfold coordination, respectively. Crystal-field strength, as well as the Racah parameters B and C, were also determined via Tanabe–Sugano energy-level diagram, offering insights into the ligand-field environment of Mn2+ ions in the structure. A near-ideal white light (CCT = 5230 K) is achieved by combining the emission of the crystal with a blue LED (λ = 406 nm), which is also used as the excitation source. While this fluorescent behavior is promising, further studies are needed to assess the internal quantum efficiency for phosphor applications. Nevertheless, the findings underscore the potential of double salt structure as a host matrix for light-emitting materials (emissive dopant incorporation), expanding the functional perspectives of kröhnkite-based compounds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science
Journal of Materials Science 工程技术-材料科学:综合
CiteScore
7.90
自引率
4.40%
发文量
1297
审稿时长
2.4 months
期刊介绍: The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信