CrAlN的氧化行为:从头算分子动力学模拟与实验

IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ergeng Zhang, Jingjing Xu, Biao Huang, Qiong Zhou, Qiang Chen, Dandan Liang, Zhibin Lou
{"title":"CrAlN的氧化行为:从头算分子动力学模拟与实验","authors":"Ergeng Zhang,&nbsp;Jingjing Xu,&nbsp;Biao Huang,&nbsp;Qiong Zhou,&nbsp;Qiang Chen,&nbsp;Dandan Liang,&nbsp;Zhibin Lou","doi":"10.1007/s10853-025-11542-w","DOIUrl":null,"url":null,"abstract":"<div><p>The high-temperature oxidation resistance of CrAlN coatings is synergistically regulated by aluminum content and temperature, but the atomic-scale mechanism of the initial oxidation stage remains unclear. This study combines ab initio molecular dynamics (AIMD) simulations with experiments to systematically investigate the effects of aluminum content (Cr<sub>0.5</sub>Al<sub>0.5</sub>N and Cr<sub>0.15</sub>Al<sub>0.85</sub>N) and temperature (773 K, 973 K, and 1173 K) on the oxidation mechanism of the coatings. Simulation results indicate that Cr<sub>0.5</sub>Al<sub>0.5</sub>N preferentially form a dense (Cr, Al)<sub>2</sub>O<sub>3</sub> mixed oxide layer at high temperatures, with Cr–O–Al bonding dominating during the initial oxidation stage, effectively inhibiting oxygen diffusion, while in Cr<sub>0.15</sub>Al<sub>0.85</sub>N, aluminum atoms selectively migrate to form discontinuous Al<sub>2</sub>O<sub>3</sub> layers, resulting in only a small amount of (Cr, Al)<sub>2</sub>O<sub>3</sub> mixed oxide layers, thereby reducing the protective efficacy against oxidation. By analyzing the average displacement of oxygen atoms bonded to metal atoms (Cr, Al), it is found that high temperatures (1173 K) significantly accelerate metal atom migration, promoting the densification of mixed oxides in Cr<sub>0.5</sub>Al<sub>0.5</sub>N. At the same time, CrAlN-1 (Cr<sub>0.54</sub>Al<sub>0.46</sub>N) and CrAlN-2 (Cr<sub>0.17</sub>Al<sub>0.83</sub>N) coatings were prepared. The results indicate that at 1173 K (900 °C), CrAlN-1 forms a denser oxide layer of 0.3 μm primarily consisting of (Cr, Al)<sub>2</sub>O<sub>3</sub>, whereas CrAlN-2 develops a thicker oxide layer of 0.45 μm dominated by Al<sub>2</sub>O<sub>3</sub> with minor (Cr, Al)<sub>2</sub>O<sub>3</sub> content. The XPS analysis confirmed that as the temperature increased, the CrAlN-1 coating formed more Cr–O–Al bonds with better oxidation resistance. The experimental results are consistent with the simulation calculations, verifying the feasibility of predicting the anti-oxidation performance of coatings using ab initio molecular dynamics methods, and providing a theoretical basis for the design of high-performance CrAlN coatings.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"60 42","pages":"20406 - 20425"},"PeriodicalIF":3.9000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oxidation behavior of CrAlN: ab initio molecular dynamics simulations and experiments\",\"authors\":\"Ergeng Zhang,&nbsp;Jingjing Xu,&nbsp;Biao Huang,&nbsp;Qiong Zhou,&nbsp;Qiang Chen,&nbsp;Dandan Liang,&nbsp;Zhibin Lou\",\"doi\":\"10.1007/s10853-025-11542-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The high-temperature oxidation resistance of CrAlN coatings is synergistically regulated by aluminum content and temperature, but the atomic-scale mechanism of the initial oxidation stage remains unclear. This study combines ab initio molecular dynamics (AIMD) simulations with experiments to systematically investigate the effects of aluminum content (Cr<sub>0.5</sub>Al<sub>0.5</sub>N and Cr<sub>0.15</sub>Al<sub>0.85</sub>N) and temperature (773 K, 973 K, and 1173 K) on the oxidation mechanism of the coatings. Simulation results indicate that Cr<sub>0.5</sub>Al<sub>0.5</sub>N preferentially form a dense (Cr, Al)<sub>2</sub>O<sub>3</sub> mixed oxide layer at high temperatures, with Cr–O–Al bonding dominating during the initial oxidation stage, effectively inhibiting oxygen diffusion, while in Cr<sub>0.15</sub>Al<sub>0.85</sub>N, aluminum atoms selectively migrate to form discontinuous Al<sub>2</sub>O<sub>3</sub> layers, resulting in only a small amount of (Cr, Al)<sub>2</sub>O<sub>3</sub> mixed oxide layers, thereby reducing the protective efficacy against oxidation. By analyzing the average displacement of oxygen atoms bonded to metal atoms (Cr, Al), it is found that high temperatures (1173 K) significantly accelerate metal atom migration, promoting the densification of mixed oxides in Cr<sub>0.5</sub>Al<sub>0.5</sub>N. At the same time, CrAlN-1 (Cr<sub>0.54</sub>Al<sub>0.46</sub>N) and CrAlN-2 (Cr<sub>0.17</sub>Al<sub>0.83</sub>N) coatings were prepared. The results indicate that at 1173 K (900 °C), CrAlN-1 forms a denser oxide layer of 0.3 μm primarily consisting of (Cr, Al)<sub>2</sub>O<sub>3</sub>, whereas CrAlN-2 develops a thicker oxide layer of 0.45 μm dominated by Al<sub>2</sub>O<sub>3</sub> with minor (Cr, Al)<sub>2</sub>O<sub>3</sub> content. The XPS analysis confirmed that as the temperature increased, the CrAlN-1 coating formed more Cr–O–Al bonds with better oxidation resistance. The experimental results are consistent with the simulation calculations, verifying the feasibility of predicting the anti-oxidation performance of coatings using ab initio molecular dynamics methods, and providing a theoretical basis for the design of high-performance CrAlN coatings.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":645,\"journal\":{\"name\":\"Journal of Materials Science\",\"volume\":\"60 42\",\"pages\":\"20406 - 20425\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10853-025-11542-w\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-025-11542-w","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

CrAlN涂层的高温抗氧化性受铝含量和温度的协同调节,但其初始氧化阶段的原子尺度机制尚不清楚。本研究将从头算分子动力学(AIMD)模拟与实验相结合,系统研究了铝含量(Cr0.5Al0.5N和Cr0.15Al0.85N)和温度(773 K、973 K和1173 K)对涂层氧化机理的影响。模拟结果表明,Cr0.5Al0.5N在高温下优先形成致密的(Cr, Al)2O3混合氧化层,在氧化初期以Cr - o - Al键为主,有效地抑制了氧的扩散,而在Cr0.15Al0.85N中,铝原子选择性迁移形成不连续的Al2O3层,导致只有少量的(Cr, Al)2O3混合氧化层,从而降低了抗氧化的保护效果。通过分析与金属原子(Cr, Al)结合的氧原子的平均位移,发现高温(1173 K)显著加速了金属原子的迁移,促进了Cr0.5Al0.5N中混合氧化物的致密化。同时制备CrAlN-1 (Cr0.54Al0.46N)和CrAlN-2 (Cr0.17Al0.83N)涂层。结果表明:在1173 K(900℃)时,CrAlN-1形成了致密的氧化层,厚度为0.3 μm,主要由(Cr, Al)2O3组成;CrAlN-2形成了较厚的氧化层,厚度为0.45 μm,主要由Al2O3组成,(Cr, Al)2O3含量较少;XPS分析证实,随着温度的升高,CrAlN-1涂层形成了更多的Cr-O-Al键,具有更好的抗氧化性。实验结果与模拟计算结果一致,验证了从头算分子动力学方法预测涂层抗氧化性能的可行性,为高性能CrAlN涂层的设计提供了理论依据。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Oxidation behavior of CrAlN: ab initio molecular dynamics simulations and experiments

The high-temperature oxidation resistance of CrAlN coatings is synergistically regulated by aluminum content and temperature, but the atomic-scale mechanism of the initial oxidation stage remains unclear. This study combines ab initio molecular dynamics (AIMD) simulations with experiments to systematically investigate the effects of aluminum content (Cr0.5Al0.5N and Cr0.15Al0.85N) and temperature (773 K, 973 K, and 1173 K) on the oxidation mechanism of the coatings. Simulation results indicate that Cr0.5Al0.5N preferentially form a dense (Cr, Al)2O3 mixed oxide layer at high temperatures, with Cr–O–Al bonding dominating during the initial oxidation stage, effectively inhibiting oxygen diffusion, while in Cr0.15Al0.85N, aluminum atoms selectively migrate to form discontinuous Al2O3 layers, resulting in only a small amount of (Cr, Al)2O3 mixed oxide layers, thereby reducing the protective efficacy against oxidation. By analyzing the average displacement of oxygen atoms bonded to metal atoms (Cr, Al), it is found that high temperatures (1173 K) significantly accelerate metal atom migration, promoting the densification of mixed oxides in Cr0.5Al0.5N. At the same time, CrAlN-1 (Cr0.54Al0.46N) and CrAlN-2 (Cr0.17Al0.83N) coatings were prepared. The results indicate that at 1173 K (900 °C), CrAlN-1 forms a denser oxide layer of 0.3 μm primarily consisting of (Cr, Al)2O3, whereas CrAlN-2 develops a thicker oxide layer of 0.45 μm dominated by Al2O3 with minor (Cr, Al)2O3 content. The XPS analysis confirmed that as the temperature increased, the CrAlN-1 coating formed more Cr–O–Al bonds with better oxidation resistance. The experimental results are consistent with the simulation calculations, verifying the feasibility of predicting the anti-oxidation performance of coatings using ab initio molecular dynamics methods, and providing a theoretical basis for the design of high-performance CrAlN coatings.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science
Journal of Materials Science 工程技术-材料科学:综合
CiteScore
7.90
自引率
4.40%
发文量
1297
审稿时长
2.4 months
期刊介绍: The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信