Yanli Huo, Yufeng Chen, Shouwan Qin, Hailin Liu, Hailong Liang, Jiajia Ma, Haoran Sun and Xiankai Sun
{"title":"RMI制备的C/C - sic热防护复合材料的显微组织、力学性能和抗氧化性能得到了增强","authors":"Yanli Huo, Yufeng Chen, Shouwan Qin, Hailin Liu, Hailong Liang, Jiajia Ma, Haoran Sun and Xiankai Sun","doi":"10.1039/D5RA04829J","DOIUrl":null,"url":null,"abstract":"<p >In this study, two-dimensional needle-punched laminated C fibres were used as preforms, and interfacial phases were prepared <em>via</em> chemical vapor infiltration (CVI) using pyrolytic carbon (CVI-PyC), sucrose-derived carbon (S/C), and pitch-derived carbon (P/C). The effects of interfacial phases on fibre coatings and siliconizing properties were investigated. The results demonstrated that the CVI-PyC interfacial phase is the most continuous and dense, providing the best protection effect on the fibres and forming a uniform cylindrical structure after siliconizing. The S/C interfacial phase is the second best; however, the matrix is fragmented after siliconizing. The P/C interfacial phase is the worst, leading to a lamellar surface structure and microcracks after siliconizing. Using CVI-PyC and S/C alternately as matrix carbon sources, C/C–SiC composites were synthesized <em>via</em> reactive melt infiltration, which comprised carbon fibres, SiC, and residual Si. According to mechanical property test results, the bending and tensile strengths of the prepared C/C–SiC composites were 345.4 and 156 MPa, respectively, which are considerably higher than those of single sucrose-derived carbon (134 and 75 MPa, respectively) and CVI-PyC matrix carbon (261.9 and 108 MPa, respectively). Oxidation-resistant coatings were prepared on the surface of the materials through chemical vapor deposition. High-temperature examination demonstrated that the coating effectively inhibited fibre oxidation, and the tensile strength retention rate reached 41% at 1500 °C in an oxygen environment, whereas the strength of the uncoated samples decreased to <10 MPa. This study provides an important reference for optimizing the interface design and high-temperature oxidation resistance of C/C–SiC composites.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 48","pages":" 40328-40337"},"PeriodicalIF":4.6000,"publicationDate":"2025-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra04829j?page=search","citationCount":"0","resultStr":"{\"title\":\"Enhanced microstructure as well as mechanical and oxidation resistance of C/C–SiC composites fabricated by RMI for thermal protection\",\"authors\":\"Yanli Huo, Yufeng Chen, Shouwan Qin, Hailin Liu, Hailong Liang, Jiajia Ma, Haoran Sun and Xiankai Sun\",\"doi\":\"10.1039/D5RA04829J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In this study, two-dimensional needle-punched laminated C fibres were used as preforms, and interfacial phases were prepared <em>via</em> chemical vapor infiltration (CVI) using pyrolytic carbon (CVI-PyC), sucrose-derived carbon (S/C), and pitch-derived carbon (P/C). The effects of interfacial phases on fibre coatings and siliconizing properties were investigated. The results demonstrated that the CVI-PyC interfacial phase is the most continuous and dense, providing the best protection effect on the fibres and forming a uniform cylindrical structure after siliconizing. The S/C interfacial phase is the second best; however, the matrix is fragmented after siliconizing. The P/C interfacial phase is the worst, leading to a lamellar surface structure and microcracks after siliconizing. Using CVI-PyC and S/C alternately as matrix carbon sources, C/C–SiC composites were synthesized <em>via</em> reactive melt infiltration, which comprised carbon fibres, SiC, and residual Si. According to mechanical property test results, the bending and tensile strengths of the prepared C/C–SiC composites were 345.4 and 156 MPa, respectively, which are considerably higher than those of single sucrose-derived carbon (134 and 75 MPa, respectively) and CVI-PyC matrix carbon (261.9 and 108 MPa, respectively). Oxidation-resistant coatings were prepared on the surface of the materials through chemical vapor deposition. High-temperature examination demonstrated that the coating effectively inhibited fibre oxidation, and the tensile strength retention rate reached 41% at 1500 °C in an oxygen environment, whereas the strength of the uncoated samples decreased to <10 MPa. This study provides an important reference for optimizing the interface design and high-temperature oxidation resistance of C/C–SiC composites.</p>\",\"PeriodicalId\":102,\"journal\":{\"name\":\"RSC Advances\",\"volume\":\" 48\",\"pages\":\" 40328-40337\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra04829j?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC Advances\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra04829j\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra04829j","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Enhanced microstructure as well as mechanical and oxidation resistance of C/C–SiC composites fabricated by RMI for thermal protection
In this study, two-dimensional needle-punched laminated C fibres were used as preforms, and interfacial phases were prepared via chemical vapor infiltration (CVI) using pyrolytic carbon (CVI-PyC), sucrose-derived carbon (S/C), and pitch-derived carbon (P/C). The effects of interfacial phases on fibre coatings and siliconizing properties were investigated. The results demonstrated that the CVI-PyC interfacial phase is the most continuous and dense, providing the best protection effect on the fibres and forming a uniform cylindrical structure after siliconizing. The S/C interfacial phase is the second best; however, the matrix is fragmented after siliconizing. The P/C interfacial phase is the worst, leading to a lamellar surface structure and microcracks after siliconizing. Using CVI-PyC and S/C alternately as matrix carbon sources, C/C–SiC composites were synthesized via reactive melt infiltration, which comprised carbon fibres, SiC, and residual Si. According to mechanical property test results, the bending and tensile strengths of the prepared C/C–SiC composites were 345.4 and 156 MPa, respectively, which are considerably higher than those of single sucrose-derived carbon (134 and 75 MPa, respectively) and CVI-PyC matrix carbon (261.9 and 108 MPa, respectively). Oxidation-resistant coatings were prepared on the surface of the materials through chemical vapor deposition. High-temperature examination demonstrated that the coating effectively inhibited fibre oxidation, and the tensile strength retention rate reached 41% at 1500 °C in an oxygen environment, whereas the strength of the uncoated samples decreased to <10 MPa. This study provides an important reference for optimizing the interface design and high-temperature oxidation resistance of C/C–SiC composites.
期刊介绍:
An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.