固体化学反应驱动的bioo3催化剂促进过氧单硫酸盐的压催化活性以降解污染物

IF 4.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
RSC Advances Pub Date : 2025-10-23 DOI:10.1039/D5RA06135K
Yuling Ye, Xiaorong Zeng, Aize Hao, Zheng Fang, Youguang Ran, Jiayi Zhu, Shanshan Hu and Xiaonan Liu
{"title":"固体化学反应驱动的bioo3催化剂促进过氧单硫酸盐的压催化活性以降解污染物","authors":"Yuling Ye, Xiaorong Zeng, Aize Hao, Zheng Fang, Youguang Ran, Jiayi Zhu, Shanshan Hu and Xiaonan Liu","doi":"10.1039/D5RA06135K","DOIUrl":null,"url":null,"abstract":"<p >A simple and scalable solid-state chemical reaction method was employed to fabricate the BiOIO<small><sub>3</sub></small> piezocatalyst. Notably, the BiOIO<small><sub>3</sub></small> piezocatalyst, in conjunction with ultrasonic vibration (US) and the peroxymonosulfate (PMS) system, exhibited exceptional catalytic performance in the degradation of pollutants (rhodamine B (RhB) and tetracycline (TC)). The BiOIO<small><sub>3</sub></small>/PMS/US system achieved an impressive reaction rate constant (RhB dye: 0.4958 min<small><sup>−1</sup></small> and TC: 0.1983 min<small><sup>−1</sup></small>) and high degradation efficiency (RhB dye: 88.8% within 4 min and TC: 86.3% within 10 min) and demonstrated good stability, surpassing the performance of the single BiOIO<small><sub>3</sub></small> and other material systems. Radical quenching and EPR spectroscopy experiments further identified the contributions of non-free radicals and free radicals in the BiOIO<small><sub>3</sub></small>/PMS/US system. Finally, a mechanism was proposed for the BiOIO<small><sub>3</sub></small>/PMS/US system. This work not only offers insights into the design of high-performance piezocatalysts but also advances high-efficiency approaches for sustainable wastewater remediation.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 48","pages":" 40381-40388"},"PeriodicalIF":4.6000,"publicationDate":"2025-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra06135k?page=search","citationCount":"0","resultStr":"{\"title\":\"Solid-state chemical reaction-driven BiOIO3 catalyst for boosting piezocatalytic activation of peroxymonosulfate toward pollutant degradation\",\"authors\":\"Yuling Ye, Xiaorong Zeng, Aize Hao, Zheng Fang, Youguang Ran, Jiayi Zhu, Shanshan Hu and Xiaonan Liu\",\"doi\":\"10.1039/D5RA06135K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >A simple and scalable solid-state chemical reaction method was employed to fabricate the BiOIO<small><sub>3</sub></small> piezocatalyst. Notably, the BiOIO<small><sub>3</sub></small> piezocatalyst, in conjunction with ultrasonic vibration (US) and the peroxymonosulfate (PMS) system, exhibited exceptional catalytic performance in the degradation of pollutants (rhodamine B (RhB) and tetracycline (TC)). The BiOIO<small><sub>3</sub></small>/PMS/US system achieved an impressive reaction rate constant (RhB dye: 0.4958 min<small><sup>−1</sup></small> and TC: 0.1983 min<small><sup>−1</sup></small>) and high degradation efficiency (RhB dye: 88.8% within 4 min and TC: 86.3% within 10 min) and demonstrated good stability, surpassing the performance of the single BiOIO<small><sub>3</sub></small> and other material systems. Radical quenching and EPR spectroscopy experiments further identified the contributions of non-free radicals and free radicals in the BiOIO<small><sub>3</sub></small>/PMS/US system. Finally, a mechanism was proposed for the BiOIO<small><sub>3</sub></small>/PMS/US system. This work not only offers insights into the design of high-performance piezocatalysts but also advances high-efficiency approaches for sustainable wastewater remediation.</p>\",\"PeriodicalId\":102,\"journal\":{\"name\":\"RSC Advances\",\"volume\":\" 48\",\"pages\":\" 40381-40388\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra06135k?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC Advances\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra06135k\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra06135k","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

采用一种简单、可扩展的固体化学反应方法制备了bioo3压电催化剂。值得注意的是,BiOIO3压电催化剂与超声振动(US)和过氧单硫酸盐(PMS)系统结合,在降解污染物(罗丹明B (RhB)和四环素(TC))方面表现出了卓越的催化性能。BiOIO3/PMS/US体系获得了令人印象深刻的反应速率常数(RhB染料:0.4958 min−1,TC: 0.1983 min−1)和高降解效率(RhB染料:4 min内88.8%,TC: 10 min内86.3%),并表现出良好的稳定性,优于单一BiOIO3和其他材料体系的性能。自由基猝灭和EPR光谱实验进一步确定了非自由基和自由基在BiOIO3/PMS/US体系中的贡献。最后,提出了BiOIO3/PMS/US体系的机理。这项工作不仅为高性能压电催化剂的设计提供了见解,而且还为可持续的废水修复提供了高效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Solid-state chemical reaction-driven BiOIO3 catalyst for boosting piezocatalytic activation of peroxymonosulfate toward pollutant degradation

Solid-state chemical reaction-driven BiOIO3 catalyst for boosting piezocatalytic activation of peroxymonosulfate toward pollutant degradation

A simple and scalable solid-state chemical reaction method was employed to fabricate the BiOIO3 piezocatalyst. Notably, the BiOIO3 piezocatalyst, in conjunction with ultrasonic vibration (US) and the peroxymonosulfate (PMS) system, exhibited exceptional catalytic performance in the degradation of pollutants (rhodamine B (RhB) and tetracycline (TC)). The BiOIO3/PMS/US system achieved an impressive reaction rate constant (RhB dye: 0.4958 min−1 and TC: 0.1983 min−1) and high degradation efficiency (RhB dye: 88.8% within 4 min and TC: 86.3% within 10 min) and demonstrated good stability, surpassing the performance of the single BiOIO3 and other material systems. Radical quenching and EPR spectroscopy experiments further identified the contributions of non-free radicals and free radicals in the BiOIO3/PMS/US system. Finally, a mechanism was proposed for the BiOIO3/PMS/US system. This work not only offers insights into the design of high-performance piezocatalysts but also advances high-efficiency approaches for sustainable wastewater remediation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
RSC Advances
RSC Advances chemical sciences-
CiteScore
7.50
自引率
2.60%
发文量
3116
审稿时长
1.6 months
期刊介绍: An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信