深部地幔热导率对地幔和地核热化学演化的影响

IF 4.8 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Jiacheng Tian, Diogo L. Lourenço, Paul J. Tackley
{"title":"深部地幔热导率对地幔和地核热化学演化的影响","authors":"Jiacheng Tian,&nbsp;Diogo L. Lourenço,&nbsp;Paul J. Tackley","doi":"10.1016/j.epsl.2025.119695","DOIUrl":null,"url":null,"abstract":"<div><div>Recent mineral physics studies of lower mantle thermal conductivity predict substantially different values of thermal conductivity under core-mantle boundary (CMB) conditions, which might be expected to result in different CMB heat fluxes and thermal histories of Earth's mantle and core. We test this prediction using mantle convection simulations coupled with a parameterised core evolution model. Our results demonstrate that differences in lower mantle thermal conductivity do not lead to proportional changes in CMB heat flux. Instead, there is a self-regulation of CMB heat flux that results in similar present-day values: higher thermal conductivity results in more rapid core cooling, reducing the temperature drop across the CMB thermal boundary layer; and also promotes the formation of larger basaltic piles above the CMB, which further lower the local and global CMB heat flux. The upper and lower mantle follow different thermal evolution paths due to partial layering caused by the “basalt barrier” at the mantle transition zone. The modelled mantle temperatures at 4.5 Gyr are similar across models with different lower mantle thermal conductivity. The upper mantle thermal evolution is broadly consistent with petrological constraints. These findings highlight the importance of considering thermochemical feedback mechanisms when modelling Earth's thermal evolution.</div></div>","PeriodicalId":11481,"journal":{"name":"Earth and Planetary Science Letters","volume":"672 ","pages":"Article 119695"},"PeriodicalIF":4.8000,"publicationDate":"2025-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of deep mantle thermal conductivity on the thermochemical evolution of Earth's mantle and core\",\"authors\":\"Jiacheng Tian,&nbsp;Diogo L. Lourenço,&nbsp;Paul J. Tackley\",\"doi\":\"10.1016/j.epsl.2025.119695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recent mineral physics studies of lower mantle thermal conductivity predict substantially different values of thermal conductivity under core-mantle boundary (CMB) conditions, which might be expected to result in different CMB heat fluxes and thermal histories of Earth's mantle and core. We test this prediction using mantle convection simulations coupled with a parameterised core evolution model. Our results demonstrate that differences in lower mantle thermal conductivity do not lead to proportional changes in CMB heat flux. Instead, there is a self-regulation of CMB heat flux that results in similar present-day values: higher thermal conductivity results in more rapid core cooling, reducing the temperature drop across the CMB thermal boundary layer; and also promotes the formation of larger basaltic piles above the CMB, which further lower the local and global CMB heat flux. The upper and lower mantle follow different thermal evolution paths due to partial layering caused by the “basalt barrier” at the mantle transition zone. The modelled mantle temperatures at 4.5 Gyr are similar across models with different lower mantle thermal conductivity. The upper mantle thermal evolution is broadly consistent with petrological constraints. These findings highlight the importance of considering thermochemical feedback mechanisms when modelling Earth's thermal evolution.</div></div>\",\"PeriodicalId\":11481,\"journal\":{\"name\":\"Earth and Planetary Science Letters\",\"volume\":\"672 \",\"pages\":\"Article 119695\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth and Planetary Science Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012821X25004935\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Planetary Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012821X25004935","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

最近对下地幔热导率的矿物物理研究预测,在核幔边界条件下的热导率值存在显著差异,这可能导致不同的地幔热通量和地幔和地核的热历史。我们使用地幔对流模拟和参数化岩心演化模型来验证这一预测。我们的研究结果表明,下地幔热导率的差异不会导致CMB热通量的成比例变化。相反,CMB热通量的自我调节导致了类似的今天的值:更高的热导率导致更快速的核心冷却,减少了CMB热边界层的温度下降;同时也促进了CMB上方较大玄武岩桩的形成,进一步降低了CMB局部和全球的热通量。由于地幔过渡带“玄武岩屏障”的局部分层,上、下地幔热演化路径不同。在不同下地幔热导率的模型中,模拟的地幔温度在4.5 Gyr处相似。上地幔热演化与岩石学约束基本一致。这些发现强调了在模拟地球热演化时考虑热化学反馈机制的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of deep mantle thermal conductivity on the thermochemical evolution of Earth's mantle and core
Recent mineral physics studies of lower mantle thermal conductivity predict substantially different values of thermal conductivity under core-mantle boundary (CMB) conditions, which might be expected to result in different CMB heat fluxes and thermal histories of Earth's mantle and core. We test this prediction using mantle convection simulations coupled with a parameterised core evolution model. Our results demonstrate that differences in lower mantle thermal conductivity do not lead to proportional changes in CMB heat flux. Instead, there is a self-regulation of CMB heat flux that results in similar present-day values: higher thermal conductivity results in more rapid core cooling, reducing the temperature drop across the CMB thermal boundary layer; and also promotes the formation of larger basaltic piles above the CMB, which further lower the local and global CMB heat flux. The upper and lower mantle follow different thermal evolution paths due to partial layering caused by the “basalt barrier” at the mantle transition zone. The modelled mantle temperatures at 4.5 Gyr are similar across models with different lower mantle thermal conductivity. The upper mantle thermal evolution is broadly consistent with petrological constraints. These findings highlight the importance of considering thermochemical feedback mechanisms when modelling Earth's thermal evolution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earth and Planetary Science Letters
Earth and Planetary Science Letters 地学-地球化学与地球物理
CiteScore
10.30
自引率
5.70%
发文量
475
审稿时长
2.8 months
期刊介绍: Earth and Planetary Science Letters (EPSL) is a leading journal for researchers across the entire Earth and planetary sciences community. It publishes concise, exciting, high-impact articles ("Letters") of broad interest. Its focus is on physical and chemical processes, the evolution and general properties of the Earth and planets - from their deep interiors to their atmospheres. EPSL also includes a Frontiers section, featuring invited high-profile synthesis articles by leading experts on timely topics to bring cutting-edge research to the wider community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信