太阳能地风光伏能源系统的动态建模与实验验证

IF 6 2区 工程技术 Q2 ENERGY & FUELS
Ismail Baklouti , Muhammad Abdul Mujeebu , Abdultawab M. Qahtan
{"title":"太阳能地风光伏能源系统的动态建模与实验验证","authors":"Ismail Baklouti ,&nbsp;Muhammad Abdul Mujeebu ,&nbsp;Abdultawab M. Qahtan","doi":"10.1016/j.solener.2025.114072","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a performance analysis of a novel Geo-Aerovoltaic energy system, which integrates a bifluid Photovoltaic-Thermal (PVT) collector with a geothermal well. The bifluid collector uses both air and water circuits to cool the PV module, enabling tri-generation of electricity, hot air, and hot water. A high-fidelity, one-dimensional dynamic model was developed using an equation-oriented approach in Pyomo and rigorously validated against experimental data from a full-scale prototype, achieving a Root Mean Square Error (RMSE) of less than 1<!--> <!-->°C for key output temperatures. A comprehensive parametric study quantified the system’s performance under standard and geothermal-coupled operating modes. Results demonstrate a fundamental trade-off between the air and water thermal outputs, which can be modulated by flow rates. Most significantly, integrating a cold geothermal source transforms the collector into a highly effective ambient and solar heat harvester. This geothermal cooling mode dramatically boosts electrical efficiency by maintaining low cell temperatures and increases water thermal efficiency from a standard 12% to over 40%, providing a powerful mechanism for ground thermal regeneration. The study validates the Geo-Aerovoltaic concept as a versatile and synergistic technology for building decarbonization.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"303 ","pages":"Article 114072"},"PeriodicalIF":6.0000,"publicationDate":"2025-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic modeling and experimental validation of solar Geo-Aerovoltaic energy system\",\"authors\":\"Ismail Baklouti ,&nbsp;Muhammad Abdul Mujeebu ,&nbsp;Abdultawab M. Qahtan\",\"doi\":\"10.1016/j.solener.2025.114072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a performance analysis of a novel Geo-Aerovoltaic energy system, which integrates a bifluid Photovoltaic-Thermal (PVT) collector with a geothermal well. The bifluid collector uses both air and water circuits to cool the PV module, enabling tri-generation of electricity, hot air, and hot water. A high-fidelity, one-dimensional dynamic model was developed using an equation-oriented approach in Pyomo and rigorously validated against experimental data from a full-scale prototype, achieving a Root Mean Square Error (RMSE) of less than 1<!--> <!-->°C for key output temperatures. A comprehensive parametric study quantified the system’s performance under standard and geothermal-coupled operating modes. Results demonstrate a fundamental trade-off between the air and water thermal outputs, which can be modulated by flow rates. Most significantly, integrating a cold geothermal source transforms the collector into a highly effective ambient and solar heat harvester. This geothermal cooling mode dramatically boosts electrical efficiency by maintaining low cell temperatures and increases water thermal efficiency from a standard 12% to over 40%, providing a powerful mechanism for ground thermal regeneration. The study validates the Geo-Aerovoltaic concept as a versatile and synergistic technology for building decarbonization.</div></div>\",\"PeriodicalId\":428,\"journal\":{\"name\":\"Solar Energy\",\"volume\":\"303 \",\"pages\":\"Article 114072\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038092X25008357\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X25008357","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种将双流体光伏-热(PVT)集热器与地热井相结合的新型地-风-电能源系统的性能分析。双流体集热器使用空气和水回路来冷却光伏模块,从而实现电力、热空气和热水的三联产。在Pyomo中使用面向方程的方法开发了一个高保真的一维动态模型,并根据全尺寸原型的实验数据进行了严格验证,实现了关键输出温度的均方根误差(RMSE)小于1°C。综合参数研究量化了系统在标准和地热耦合工作模式下的性能。结果表明,空气和水的热输出之间的基本权衡,这可以通过流量调节。最重要的是,集成冷地热源将集热器转变为高效的环境和太阳能集热器。这种地热冷却模式通过保持较低的电池温度,极大地提高了电力效率,并将水热效率从标准的12%提高到40%以上,为地面热再生提供了强大的机制。该研究验证了地电概念作为一种多功能和协同的建筑脱碳技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic modeling and experimental validation of solar Geo-Aerovoltaic energy system
This paper presents a performance analysis of a novel Geo-Aerovoltaic energy system, which integrates a bifluid Photovoltaic-Thermal (PVT) collector with a geothermal well. The bifluid collector uses both air and water circuits to cool the PV module, enabling tri-generation of electricity, hot air, and hot water. A high-fidelity, one-dimensional dynamic model was developed using an equation-oriented approach in Pyomo and rigorously validated against experimental data from a full-scale prototype, achieving a Root Mean Square Error (RMSE) of less than 1 °C for key output temperatures. A comprehensive parametric study quantified the system’s performance under standard and geothermal-coupled operating modes. Results demonstrate a fundamental trade-off between the air and water thermal outputs, which can be modulated by flow rates. Most significantly, integrating a cold geothermal source transforms the collector into a highly effective ambient and solar heat harvester. This geothermal cooling mode dramatically boosts electrical efficiency by maintaining low cell temperatures and increases water thermal efficiency from a standard 12% to over 40%, providing a powerful mechanism for ground thermal regeneration. The study validates the Geo-Aerovoltaic concept as a versatile and synergistic technology for building decarbonization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Energy
Solar Energy 工程技术-能源与燃料
CiteScore
13.90
自引率
9.00%
发文量
0
审稿时长
47 days
期刊介绍: Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信