用于水电热电联产界面蒸发器的高耐盐自捻三维核壳纳米纤维纱线

IF 13.2 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Jiulin Bai , Jiahui Liu , Xin Tian , Jinxue Cheng , Zhi Fan , Minjie Guo , Bowen Cheng
{"title":"用于水电热电联产界面蒸发器的高耐盐自捻三维核壳纳米纤维纱线","authors":"Jiulin Bai ,&nbsp;Jiahui Liu ,&nbsp;Xin Tian ,&nbsp;Jinxue Cheng ,&nbsp;Zhi Fan ,&nbsp;Minjie Guo ,&nbsp;Bowen Cheng","doi":"10.1016/j.cej.2025.169683","DOIUrl":null,"url":null,"abstract":"<div><div>Solar interfacial evaporation (SIE) technology holds promise for mitigate water scarcity and electricity energy shortages, yet salt crystallization at the evaporation interface remains a critical barrier to stable water-electrical cogeneration. Herein, an evaporator featuring a three-dimensional vertical array structure composed of self-twisting core-shell nanofiber yarns was designed. Upon external stimulation, hydrophilic Poly(p-dioxanone) (PPDO) nanofiber yarns spontaneous twist to form vertically aligned and mechanically robust cores for rapid capillary water transport. The graphene (GE)-doped PPDO shell enables broadband solar absorption and effective vapor escape, while the core-shell structure achieves dynamic salt equilibrium, preventing crystallization even after operating for 8 h in 25 % NaCl solution. Molecular level indicates that the interaction between PPDO and water weakens hydrogen bonds, reducing the evaporation enthalpy, achieving an evaporation rate of 3.7 kg·m<sup>−2</sup>·h<sup>−1</sup> under 1 Sun. The evaporator delivers 0.62 V and 0.065 mA under 2 Sun in 10 % NaCl solution, alongside dye removal, oil-water separation, and antibacterial activity. The self-twisting three-dimensional core-shell nanofiber yarn evaporator provides a scalable path to high performance solar driven clean water and sustainable energy systems.</div></div>","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"525 ","pages":"Article 169683"},"PeriodicalIF":13.2000,"publicationDate":"2025-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-twisting three-dimensional core-shell nanofiber yarns with high salt resistance for solar-driven interfacial evaporators in water-electrical cogeneration\",\"authors\":\"Jiulin Bai ,&nbsp;Jiahui Liu ,&nbsp;Xin Tian ,&nbsp;Jinxue Cheng ,&nbsp;Zhi Fan ,&nbsp;Minjie Guo ,&nbsp;Bowen Cheng\",\"doi\":\"10.1016/j.cej.2025.169683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Solar interfacial evaporation (SIE) technology holds promise for mitigate water scarcity and electricity energy shortages, yet salt crystallization at the evaporation interface remains a critical barrier to stable water-electrical cogeneration. Herein, an evaporator featuring a three-dimensional vertical array structure composed of self-twisting core-shell nanofiber yarns was designed. Upon external stimulation, hydrophilic Poly(p-dioxanone) (PPDO) nanofiber yarns spontaneous twist to form vertically aligned and mechanically robust cores for rapid capillary water transport. The graphene (GE)-doped PPDO shell enables broadband solar absorption and effective vapor escape, while the core-shell structure achieves dynamic salt equilibrium, preventing crystallization even after operating for 8 h in 25 % NaCl solution. Molecular level indicates that the interaction between PPDO and water weakens hydrogen bonds, reducing the evaporation enthalpy, achieving an evaporation rate of 3.7 kg·m<sup>−2</sup>·h<sup>−1</sup> under 1 Sun. The evaporator delivers 0.62 V and 0.065 mA under 2 Sun in 10 % NaCl solution, alongside dye removal, oil-water separation, and antibacterial activity. The self-twisting three-dimensional core-shell nanofiber yarn evaporator provides a scalable path to high performance solar driven clean water and sustainable energy systems.</div></div>\",\"PeriodicalId\":270,\"journal\":{\"name\":\"Chemical Engineering Journal\",\"volume\":\"525 \",\"pages\":\"Article 169683\"},\"PeriodicalIF\":13.2000,\"publicationDate\":\"2025-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1385894725105263\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1385894725105263","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

太阳能界面蒸发(SIE)技术有望缓解水资源短缺和电力短缺,但蒸发界面的盐结晶仍然是稳定水电热电联产的关键障碍。本文设计了一种由自捻核壳纳米纤维纱线组成的三维垂直阵列结构蒸发器。在外界刺激下,亲水性聚对二氧杂环酮(PPDO)纳米纤维纱线会自发扭转,形成垂直排列且机械坚固的芯,用于快速毛细管水输送。石墨烯(GE)掺杂的PPDO壳层实现了宽带太阳能吸收和有效的蒸汽逸出,而核壳结构实现了动态盐平衡,即使在25%的NaCl溶液中运行8小时也能防止结晶。分子水平表明,PPDO与水的相互作用削弱了氢键,降低了蒸发焓,在1太阳下的蒸发速率为3.7 kg·m−2·h−1。蒸发器在10% NaCl溶液中,在2个太阳下提供0.62 V和0.065 mA,同时具有去除染料,油水分离和抗菌活性。自捻三维核壳纳米纤维纱线蒸发器为高性能太阳能驱动的清洁水和可持续能源系统提供了可扩展的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-twisting three-dimensional core-shell nanofiber yarns with high salt resistance for solar-driven interfacial evaporators in water-electrical cogeneration
Solar interfacial evaporation (SIE) technology holds promise for mitigate water scarcity and electricity energy shortages, yet salt crystallization at the evaporation interface remains a critical barrier to stable water-electrical cogeneration. Herein, an evaporator featuring a three-dimensional vertical array structure composed of self-twisting core-shell nanofiber yarns was designed. Upon external stimulation, hydrophilic Poly(p-dioxanone) (PPDO) nanofiber yarns spontaneous twist to form vertically aligned and mechanically robust cores for rapid capillary water transport. The graphene (GE)-doped PPDO shell enables broadband solar absorption and effective vapor escape, while the core-shell structure achieves dynamic salt equilibrium, preventing crystallization even after operating for 8 h in 25 % NaCl solution. Molecular level indicates that the interaction between PPDO and water weakens hydrogen bonds, reducing the evaporation enthalpy, achieving an evaporation rate of 3.7 kg·m−2·h−1 under 1 Sun. The evaporator delivers 0.62 V and 0.065 mA under 2 Sun in 10 % NaCl solution, alongside dye removal, oil-water separation, and antibacterial activity. The self-twisting three-dimensional core-shell nanofiber yarn evaporator provides a scalable path to high performance solar driven clean water and sustainable energy systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Engineering Journal
Chemical Engineering Journal 工程技术-工程:化工
CiteScore
21.70
自引率
9.30%
发文量
6781
审稿时长
2.4 months
期刊介绍: The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信