Hoang Anh Tran;Nikolai Lauvås;Tor Arne Johansen;Rudy R. Negenborn
{"title":"基于意向一致的内陆自主船舶异步分布式避碰","authors":"Hoang Anh Tran;Nikolai Lauvås;Tor Arne Johansen;Rudy R. Negenborn","doi":"10.1109/TCST.2025.3587842","DOIUrl":null,"url":null,"abstract":"This article focuses on the problem of collaborative collision avoidance (CCAS) for autonomous inland ships. Two solutions are provided to solve the problem in a distributed manner. We first present a distributed model predictive control (MPC) algorithm that allows ships to directly negotiate their intention to avoid collision in a synchronous communication framework. Moreover, we introduce a new approach to shape the ship’s behavior to follow the waterway traffic regulations. The conditional convergence toward a stationary solution of this algorithm is guaranteed by the theory of the alternating direction method of multipliers (ADMM). To overcome the problem of asynchronous communication between ships, we adopt a new asynchronous nonlinear ADMM (Async-NADMM) and present an asynchronous distributed MPC algorithm based on it. Several simulations and field experiments show that the proposed algorithms can guarantee a safe distance between ships in complex scenarios while following the traffic regulations. Furthermore, the asynchronous algorithm has an efficient computational time and satisfies the real-time computing requirements of ships in field experiments.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"33 6","pages":"2410-2425"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asynchronous Distributed Collision Avoidance With Intention Consensus for Inland Autonomous Ships\",\"authors\":\"Hoang Anh Tran;Nikolai Lauvås;Tor Arne Johansen;Rudy R. Negenborn\",\"doi\":\"10.1109/TCST.2025.3587842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article focuses on the problem of collaborative collision avoidance (CCAS) for autonomous inland ships. Two solutions are provided to solve the problem in a distributed manner. We first present a distributed model predictive control (MPC) algorithm that allows ships to directly negotiate their intention to avoid collision in a synchronous communication framework. Moreover, we introduce a new approach to shape the ship’s behavior to follow the waterway traffic regulations. The conditional convergence toward a stationary solution of this algorithm is guaranteed by the theory of the alternating direction method of multipliers (ADMM). To overcome the problem of asynchronous communication between ships, we adopt a new asynchronous nonlinear ADMM (Async-NADMM) and present an asynchronous distributed MPC algorithm based on it. Several simulations and field experiments show that the proposed algorithms can guarantee a safe distance between ships in complex scenarios while following the traffic regulations. Furthermore, the asynchronous algorithm has an efficient computational time and satisfies the real-time computing requirements of ships in field experiments.\",\"PeriodicalId\":13103,\"journal\":{\"name\":\"IEEE Transactions on Control Systems Technology\",\"volume\":\"33 6\",\"pages\":\"2410-2425\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Control Systems Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11091419/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Control Systems Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11091419/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Asynchronous Distributed Collision Avoidance With Intention Consensus for Inland Autonomous Ships
This article focuses on the problem of collaborative collision avoidance (CCAS) for autonomous inland ships. Two solutions are provided to solve the problem in a distributed manner. We first present a distributed model predictive control (MPC) algorithm that allows ships to directly negotiate their intention to avoid collision in a synchronous communication framework. Moreover, we introduce a new approach to shape the ship’s behavior to follow the waterway traffic regulations. The conditional convergence toward a stationary solution of this algorithm is guaranteed by the theory of the alternating direction method of multipliers (ADMM). To overcome the problem of asynchronous communication between ships, we adopt a new asynchronous nonlinear ADMM (Async-NADMM) and present an asynchronous distributed MPC algorithm based on it. Several simulations and field experiments show that the proposed algorithms can guarantee a safe distance between ships in complex scenarios while following the traffic regulations. Furthermore, the asynchronous algorithm has an efficient computational time and satisfies the real-time computing requirements of ships in field experiments.
期刊介绍:
The IEEE Transactions on Control Systems Technology publishes high quality technical papers on technological advances in control engineering. The word technology is from the Greek technologia. The modern meaning is a scientific method to achieve a practical purpose. Control Systems Technology includes all aspects of control engineering needed to implement practical control systems, from analysis and design, through simulation and hardware. A primary purpose of the IEEE Transactions on Control Systems Technology is to have an archival publication which will bridge the gap between theory and practice. Papers are published in the IEEE Transactions on Control System Technology which disclose significant new knowledge, exploratory developments, or practical applications in all aspects of technology needed to implement control systems, from analysis and design through simulation, and hardware.