用于可穿戴电子产品集成无线储能的单片MXene架构的单步增材制造

IF 5.5 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zhen You, , , Yuzhe Chen, , , Xiaoyuan Jia, , , Xueqing Chen, , , Xuan Zhang, , , Qixiang Wang, , , Ning Ding, , , Shujuan Liu, , , Weiwei Zhao*, , and , Qiang Zhao*, 
{"title":"用于可穿戴电子产品集成无线储能的单片MXene架构的单步增材制造","authors":"Zhen You,&nbsp;, ,&nbsp;Yuzhe Chen,&nbsp;, ,&nbsp;Xiaoyuan Jia,&nbsp;, ,&nbsp;Xueqing Chen,&nbsp;, ,&nbsp;Xuan Zhang,&nbsp;, ,&nbsp;Qixiang Wang,&nbsp;, ,&nbsp;Ning Ding,&nbsp;, ,&nbsp;Shujuan Liu,&nbsp;, ,&nbsp;Weiwei Zhao*,&nbsp;, and ,&nbsp;Qiang Zhao*,&nbsp;","doi":"10.1021/acsanm.5c03882","DOIUrl":null,"url":null,"abstract":"<p >Flexible energy storage devices with integrated wireless charging units enable compact, mobile power solutions for next-generation wearable electronics. However, conventional multistep hybrid fabrication processes often suffer from interfacial energy losses and limited mechanical flexibility, hindering seamless integration. Here, we present a single-step extrusion printing strategy utilizing rheologically tailored Ti<sub>3</sub>C<sub>2</sub> MXene inks to simultaneously print interdigitated microsupercapacitors (MSCs) and wireless charging coils. This approach leverages shear-aligned MXene nanochannels to construct bifunctional modules that achieve 51.9% wireless power transfer efficiency, high areal capacitance (59.36 mF cm<sup>–2</sup>), and high energy density (26.71 μWh cm<sup>–2</sup>), effectively addressing traditional interfacial limitations. The integrated device exhibits excellent mechanical robustness, maintaining capacitance stability under various bending angles or 10,000 folding cycles. Following only 8 min of wireless charging, it delivers a peak power output of 1.3 mW, outperforming existing planar MSCs. Notably, a 140 s charging period enables continuous operation of a humidity and temperature sensor for 43 min, setting a record-high charge-to-use ratio of 18.4. This study establishes a groundbreaking paradigm for seamless wireless power-storage integration that offers transformative design principles and fabrication strategies for next-generation wearable electronics.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 42","pages":"20540–20552"},"PeriodicalIF":5.5000,"publicationDate":"2025-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-Step Additive Manufacturing of Monolithic MXene Architectures for Integrated Wireless Energy Storage in Wearable Electronics\",\"authors\":\"Zhen You,&nbsp;, ,&nbsp;Yuzhe Chen,&nbsp;, ,&nbsp;Xiaoyuan Jia,&nbsp;, ,&nbsp;Xueqing Chen,&nbsp;, ,&nbsp;Xuan Zhang,&nbsp;, ,&nbsp;Qixiang Wang,&nbsp;, ,&nbsp;Ning Ding,&nbsp;, ,&nbsp;Shujuan Liu,&nbsp;, ,&nbsp;Weiwei Zhao*,&nbsp;, and ,&nbsp;Qiang Zhao*,&nbsp;\",\"doi\":\"10.1021/acsanm.5c03882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Flexible energy storage devices with integrated wireless charging units enable compact, mobile power solutions for next-generation wearable electronics. However, conventional multistep hybrid fabrication processes often suffer from interfacial energy losses and limited mechanical flexibility, hindering seamless integration. Here, we present a single-step extrusion printing strategy utilizing rheologically tailored Ti<sub>3</sub>C<sub>2</sub> MXene inks to simultaneously print interdigitated microsupercapacitors (MSCs) and wireless charging coils. This approach leverages shear-aligned MXene nanochannels to construct bifunctional modules that achieve 51.9% wireless power transfer efficiency, high areal capacitance (59.36 mF cm<sup>–2</sup>), and high energy density (26.71 μWh cm<sup>–2</sup>), effectively addressing traditional interfacial limitations. The integrated device exhibits excellent mechanical robustness, maintaining capacitance stability under various bending angles or 10,000 folding cycles. Following only 8 min of wireless charging, it delivers a peak power output of 1.3 mW, outperforming existing planar MSCs. Notably, a 140 s charging period enables continuous operation of a humidity and temperature sensor for 43 min, setting a record-high charge-to-use ratio of 18.4. This study establishes a groundbreaking paradigm for seamless wireless power-storage integration that offers transformative design principles and fabrication strategies for next-generation wearable electronics.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":\"8 42\",\"pages\":\"20540–20552\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsanm.5c03882\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.5c03882","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

具有集成无线充电单元的灵活储能设备为下一代可穿戴电子产品提供了紧凑的移动电源解决方案。然而,传统的多步骤混合制造工艺往往存在界面能量损失和机械灵活性有限的问题,阻碍了无缝集成。在这里,我们提出了一种单步挤压打印策略,利用流变学定制的Ti3C2 MXene油墨同时打印交叉数字微型超级电容器(MSCs)和无线充电线圈。该方法利用剪切排列的MXene纳米通道构建双功能模块,实现51.9%的无线功率传输效率、高面电容(59.36 mF cm-2)和高能量密度(26.71 μWh cm-2),有效解决了传统界面的限制。该集成器件具有优异的机械稳健性,在各种弯曲角度或10,000次折叠循环下保持电容稳定性。在无线充电8分钟后,它的峰值输出功率为1.3 mW,优于现有的平面MSCs。值得注意的是,140秒的充电周期可以使湿度和温度传感器连续工作43分钟,创下了18.4的充电使用比的历史新高。这项研究为无缝无线电源存储集成建立了一个开创性的范例,为下一代可穿戴电子产品提供了变革性的设计原则和制造策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Single-Step Additive Manufacturing of Monolithic MXene Architectures for Integrated Wireless Energy Storage in Wearable Electronics

Single-Step Additive Manufacturing of Monolithic MXene Architectures for Integrated Wireless Energy Storage in Wearable Electronics

Flexible energy storage devices with integrated wireless charging units enable compact, mobile power solutions for next-generation wearable electronics. However, conventional multistep hybrid fabrication processes often suffer from interfacial energy losses and limited mechanical flexibility, hindering seamless integration. Here, we present a single-step extrusion printing strategy utilizing rheologically tailored Ti3C2 MXene inks to simultaneously print interdigitated microsupercapacitors (MSCs) and wireless charging coils. This approach leverages shear-aligned MXene nanochannels to construct bifunctional modules that achieve 51.9% wireless power transfer efficiency, high areal capacitance (59.36 mF cm–2), and high energy density (26.71 μWh cm–2), effectively addressing traditional interfacial limitations. The integrated device exhibits excellent mechanical robustness, maintaining capacitance stability under various bending angles or 10,000 folding cycles. Following only 8 min of wireless charging, it delivers a peak power output of 1.3 mW, outperforming existing planar MSCs. Notably, a 140 s charging period enables continuous operation of a humidity and temperature sensor for 43 min, setting a record-high charge-to-use ratio of 18.4. This study establishes a groundbreaking paradigm for seamless wireless power-storage integration that offers transformative design principles and fabrication strategies for next-generation wearable electronics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信