细胞膜伪装级联纳米酶重塑缺氧肿瘤微环境以增强免疫治疗

IF 5.5 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Lei Qiao, , , Wei Huang, , , Hong-Jie Gao, , , Jing Zang, , , Ming-Yu Chen, , , Meng-Yu Liu, , , Gui-Song Shan, , , Long-Hai Wang, , , Fei Wang*, , and , Xiao-Yan He*, 
{"title":"细胞膜伪装级联纳米酶重塑缺氧肿瘤微环境以增强免疫治疗","authors":"Lei Qiao,&nbsp;, ,&nbsp;Wei Huang,&nbsp;, ,&nbsp;Hong-Jie Gao,&nbsp;, ,&nbsp;Jing Zang,&nbsp;, ,&nbsp;Ming-Yu Chen,&nbsp;, ,&nbsp;Meng-Yu Liu,&nbsp;, ,&nbsp;Gui-Song Shan,&nbsp;, ,&nbsp;Long-Hai Wang,&nbsp;, ,&nbsp;Fei Wang*,&nbsp;, and ,&nbsp;Xiao-Yan He*,&nbsp;","doi":"10.1021/acsanm.5c03942","DOIUrl":null,"url":null,"abstract":"<p >The hypoxic tumor microenvironment (TME) represents a critical barrier to effective immunotherapy in breast cancer. To address this challenge, we design a cell membrane-camouflaged cascade nanozyme (CMAA) that integrates metabolic reprogramming, oxygen regulation, and immunogenic cell death (ICD) induction. CMAA incorporates MnO<sub>2</sub> nanoparticles with catalase-like activity and Au nanoparticles that mimic glucose oxidase (GOx), establishing a sequential catalytic cascade that alleviates hypoxia, depletes glucose, and generates cytotoxic hydroxyl radicals (<sup>•</sup>OH). To further optimize oxygen utilization, atovaquone (ATO), a mitochondrial complex III inhibitor, is introduced to suppress cellular oxygen consumption, thereby synergizing with the catalytic process to enhance oxygen availability. Both in vitro and in vivo, CMAA nanozyme effectively reverses hypoxia, induces ICD characterized by calreticulin (CRT) exposure and high-mobility group box 1 (HMGB1) release, and promotes CD8<sup>+</sup> T-cell infiltration. In 4T1 murine breast cancer models, CMAA nanozyme achieves significant tumor growth inhibition, reduces lung metastasis (fewer nodules), and elicits abscopal effects on distant tumors. This work establishes a triple-pathway strategy─simultaneously targeting oxygen supply, oxygen demand, and <sup>•</sup>OH amplification─to reprogram the immunosuppressive hypoxic TME. Through oxygen modulation and immune reprogramming, CMAA nanozyme provides a versatile platform for enhancing breast cancer immunotherapy.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 42","pages":"20578–20591"},"PeriodicalIF":5.5000,"publicationDate":"2025-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cell Membrane-Camouflaged Cascade Nanozymes Remodel the Hypoxic Tumor Microenvironment for Enhanced Immunotherapy\",\"authors\":\"Lei Qiao,&nbsp;, ,&nbsp;Wei Huang,&nbsp;, ,&nbsp;Hong-Jie Gao,&nbsp;, ,&nbsp;Jing Zang,&nbsp;, ,&nbsp;Ming-Yu Chen,&nbsp;, ,&nbsp;Meng-Yu Liu,&nbsp;, ,&nbsp;Gui-Song Shan,&nbsp;, ,&nbsp;Long-Hai Wang,&nbsp;, ,&nbsp;Fei Wang*,&nbsp;, and ,&nbsp;Xiao-Yan He*,&nbsp;\",\"doi\":\"10.1021/acsanm.5c03942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The hypoxic tumor microenvironment (TME) represents a critical barrier to effective immunotherapy in breast cancer. To address this challenge, we design a cell membrane-camouflaged cascade nanozyme (CMAA) that integrates metabolic reprogramming, oxygen regulation, and immunogenic cell death (ICD) induction. CMAA incorporates MnO<sub>2</sub> nanoparticles with catalase-like activity and Au nanoparticles that mimic glucose oxidase (GOx), establishing a sequential catalytic cascade that alleviates hypoxia, depletes glucose, and generates cytotoxic hydroxyl radicals (<sup>•</sup>OH). To further optimize oxygen utilization, atovaquone (ATO), a mitochondrial complex III inhibitor, is introduced to suppress cellular oxygen consumption, thereby synergizing with the catalytic process to enhance oxygen availability. Both in vitro and in vivo, CMAA nanozyme effectively reverses hypoxia, induces ICD characterized by calreticulin (CRT) exposure and high-mobility group box 1 (HMGB1) release, and promotes CD8<sup>+</sup> T-cell infiltration. In 4T1 murine breast cancer models, CMAA nanozyme achieves significant tumor growth inhibition, reduces lung metastasis (fewer nodules), and elicits abscopal effects on distant tumors. This work establishes a triple-pathway strategy─simultaneously targeting oxygen supply, oxygen demand, and <sup>•</sup>OH amplification─to reprogram the immunosuppressive hypoxic TME. Through oxygen modulation and immune reprogramming, CMAA nanozyme provides a versatile platform for enhancing breast cancer immunotherapy.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":\"8 42\",\"pages\":\"20578–20591\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsanm.5c03942\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.5c03942","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

低氧肿瘤微环境(TME)是乳腺癌有效免疫治疗的关键障碍。为了解决这一挑战,我们设计了一种膜伪装级联纳米酶(CMAA),它集成了代谢重编程、氧调节和免疫原性细胞死亡(ICD)诱导。CMAA结合了具有过氧化氢酶样活性的二氧化锰纳米颗粒和模拟葡萄糖氧化酶(GOx)的金纳米颗粒,建立了一个顺序的催化级联,减轻缺氧,消耗葡萄糖,并产生细胞毒性羟基自由基(•OH)。为了进一步优化氧利用,引入线粒体复合物III抑制剂阿托伐醌(ATO)抑制细胞耗氧量,从而与催化过程协同提高氧利用率。在体外和体内,CMAA纳米酶均能有效逆转缺氧,诱导以钙网蛋白(CRT)暴露和高迁移率组盒1 (HMGB1)释放为特征的ICD,促进CD8+ t细胞浸润。在4T1小鼠乳腺癌模型中,CMAA纳米酶实现了显著的肿瘤生长抑制,减少肺转移(减少结节),并对远处肿瘤产生体外作用。这项工作建立了一个三重途径策略──同时针对氧供应、氧需求和•OH扩增──来重新编程免疫抑制性缺氧TME。通过氧调节和免疫重编程,CMAA纳米酶为增强乳腺癌免疫治疗提供了一个多功能平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cell Membrane-Camouflaged Cascade Nanozymes Remodel the Hypoxic Tumor Microenvironment for Enhanced Immunotherapy

Cell Membrane-Camouflaged Cascade Nanozymes Remodel the Hypoxic Tumor Microenvironment for Enhanced Immunotherapy

The hypoxic tumor microenvironment (TME) represents a critical barrier to effective immunotherapy in breast cancer. To address this challenge, we design a cell membrane-camouflaged cascade nanozyme (CMAA) that integrates metabolic reprogramming, oxygen regulation, and immunogenic cell death (ICD) induction. CMAA incorporates MnO2 nanoparticles with catalase-like activity and Au nanoparticles that mimic glucose oxidase (GOx), establishing a sequential catalytic cascade that alleviates hypoxia, depletes glucose, and generates cytotoxic hydroxyl radicals (OH). To further optimize oxygen utilization, atovaquone (ATO), a mitochondrial complex III inhibitor, is introduced to suppress cellular oxygen consumption, thereby synergizing with the catalytic process to enhance oxygen availability. Both in vitro and in vivo, CMAA nanozyme effectively reverses hypoxia, induces ICD characterized by calreticulin (CRT) exposure and high-mobility group box 1 (HMGB1) release, and promotes CD8+ T-cell infiltration. In 4T1 murine breast cancer models, CMAA nanozyme achieves significant tumor growth inhibition, reduces lung metastasis (fewer nodules), and elicits abscopal effects on distant tumors. This work establishes a triple-pathway strategy─simultaneously targeting oxygen supply, oxygen demand, and OH amplification─to reprogram the immunosuppressive hypoxic TME. Through oxygen modulation and immune reprogramming, CMAA nanozyme provides a versatile platform for enhancing breast cancer immunotherapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信