利用C2O单层纳米器件增强DNA核碱基的检测:来自第一性原理分析的见解

IF 5.5 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Vasudeo Babar, , , Sitansh Sharma*, , , Abdul Rajjak Shaikh, , , Romina Oliva, , , Mohit Chawla, , and , Luigi Cavallo*, 
{"title":"利用C2O单层纳米器件增强DNA核碱基的检测:来自第一性原理分析的见解","authors":"Vasudeo Babar,&nbsp;, ,&nbsp;Sitansh Sharma*,&nbsp;, ,&nbsp;Abdul Rajjak Shaikh,&nbsp;, ,&nbsp;Romina Oliva,&nbsp;, ,&nbsp;Mohit Chawla,&nbsp;, and ,&nbsp;Luigi Cavallo*,&nbsp;","doi":"10.1021/acsanm.5c03183","DOIUrl":null,"url":null,"abstract":"<p >The detection of nucleobases is critical for enhancing DNA sequencing technologies. This study employs density functional theory (DFT) and nonequilibrium Green’s function (NEGF) methods to explore the adsorption behavior of natural DNA bases (adenine (A), thymine (T), guanine (G), and cytosine (C)) on a C<sub>2</sub>O monolayer and to assess its electronic transport properties. Our results show that adsorption occurs predominantly via physisorption, characterized by minimal charge transfer and weak dispersion interactions, leading to the emergence of flat molecular bands near the conduction and valence band edges. Current–voltage (<i>I</i>–<i>V</i>) measurements reveal that current onset occurs around 2.5 V, with guanine exhibiting the highest current and cytosine causing the largest current reduction compared to the pure C<sub>2</sub>O monolayer. Sensitivity analysis indicates that at 3.0 V, adenine achieves the highest current sensitivity (∼48%), while at 3.5 V, cytosine reaches peak sensitivity (∼60%). These sensitivity trends enable selective differentiation of nucleobases by tuning the applied voltage, highlighting the potential of C<sub>2</sub>O monolayer-based nanodevices for voltage-dependent and -selective DNA base detection.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 42","pages":"20250–20260"},"PeriodicalIF":5.5000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Detection of DNA Nucleobases Using a C2O Monolayer Nanodevice: Insights from First-Principles Analysis\",\"authors\":\"Vasudeo Babar,&nbsp;, ,&nbsp;Sitansh Sharma*,&nbsp;, ,&nbsp;Abdul Rajjak Shaikh,&nbsp;, ,&nbsp;Romina Oliva,&nbsp;, ,&nbsp;Mohit Chawla,&nbsp;, and ,&nbsp;Luigi Cavallo*,&nbsp;\",\"doi\":\"10.1021/acsanm.5c03183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The detection of nucleobases is critical for enhancing DNA sequencing technologies. This study employs density functional theory (DFT) and nonequilibrium Green’s function (NEGF) methods to explore the adsorption behavior of natural DNA bases (adenine (A), thymine (T), guanine (G), and cytosine (C)) on a C<sub>2</sub>O monolayer and to assess its electronic transport properties. Our results show that adsorption occurs predominantly via physisorption, characterized by minimal charge transfer and weak dispersion interactions, leading to the emergence of flat molecular bands near the conduction and valence band edges. Current–voltage (<i>I</i>–<i>V</i>) measurements reveal that current onset occurs around 2.5 V, with guanine exhibiting the highest current and cytosine causing the largest current reduction compared to the pure C<sub>2</sub>O monolayer. Sensitivity analysis indicates that at 3.0 V, adenine achieves the highest current sensitivity (∼48%), while at 3.5 V, cytosine reaches peak sensitivity (∼60%). These sensitivity trends enable selective differentiation of nucleobases by tuning the applied voltage, highlighting the potential of C<sub>2</sub>O monolayer-based nanodevices for voltage-dependent and -selective DNA base detection.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":\"8 42\",\"pages\":\"20250–20260\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsanm.5c03183\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.5c03183","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

核碱基的检测是提高DNA测序技术的关键。本研究采用密度功能理论(DFT)和非平衡格林函数(NEGF)方法探索天然DNA碱基(腺嘌呤(A)、胸腺嘧啶(T)、鸟嘌呤(G)和胞嘧啶(C))在C2O单层上的吸附行为,并评估其电子输运性质。我们的研究结果表明,吸附主要通过物理吸附发生,其特征是最小的电荷转移和弱色散相互作用,导致在导电带和价带边缘附近出现平坦的分子带。电流-电压(I-V)测量显示,电流发生在2.5 V左右,与纯C2O单层相比,鸟嘌呤表现出最高的电流,而胞嘧啶导致最大的电流减少。灵敏度分析表明,在3.0 V时,腺嘌呤达到最高的电流灵敏度(~ 48%),而在3.5 V时,胞嘧啶达到峰值灵敏度(~ 60%)。这些敏感性趋势可以通过调节施加电压来选择性区分核碱基,突出了C2O单层纳米器件用于电压依赖性和选择性DNA碱基检测的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced Detection of DNA Nucleobases Using a C2O Monolayer Nanodevice: Insights from First-Principles Analysis

Enhanced Detection of DNA Nucleobases Using a C2O Monolayer Nanodevice: Insights from First-Principles Analysis

The detection of nucleobases is critical for enhancing DNA sequencing technologies. This study employs density functional theory (DFT) and nonequilibrium Green’s function (NEGF) methods to explore the adsorption behavior of natural DNA bases (adenine (A), thymine (T), guanine (G), and cytosine (C)) on a C2O monolayer and to assess its electronic transport properties. Our results show that adsorption occurs predominantly via physisorption, characterized by minimal charge transfer and weak dispersion interactions, leading to the emergence of flat molecular bands near the conduction and valence band edges. Current–voltage (IV) measurements reveal that current onset occurs around 2.5 V, with guanine exhibiting the highest current and cytosine causing the largest current reduction compared to the pure C2O monolayer. Sensitivity analysis indicates that at 3.0 V, adenine achieves the highest current sensitivity (∼48%), while at 3.5 V, cytosine reaches peak sensitivity (∼60%). These sensitivity trends enable selective differentiation of nucleobases by tuning the applied voltage, highlighting the potential of C2O monolayer-based nanodevices for voltage-dependent and -selective DNA base detection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信