可调谐高次谐波孤子脉冲光纤激光器用mof衍生的纳米多孔Co3O4十二面体

IF 5.5 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Baoyuan Liu*, , , Fang Peng, , , Yujiao Chen, , , Wei Wang, , , Zhiwen Pan, , , Rui Zhang, , and , Xiaohui Li*, 
{"title":"可调谐高次谐波孤子脉冲光纤激光器用mof衍生的纳米多孔Co3O4十二面体","authors":"Baoyuan Liu*,&nbsp;, ,&nbsp;Fang Peng,&nbsp;, ,&nbsp;Yujiao Chen,&nbsp;, ,&nbsp;Wei Wang,&nbsp;, ,&nbsp;Zhiwen Pan,&nbsp;, ,&nbsp;Rui Zhang,&nbsp;, and ,&nbsp;Xiaohui Li*,&nbsp;","doi":"10.1021/acsanm.5c02798","DOIUrl":null,"url":null,"abstract":"<p >Metal–organic frameworks (MOFs) are a class of highly porous crystalline materials composed of metal centers and organic ligands, offering remarkable versatility in catalysis and optoelectronic applications due to their unique structural properties and exceptionally high specific surface areas. A nanostructured Co<sub>3</sub>O<sub>4</sub>-based dodecahedral cone-saturated absorber demonstrates significant nonlinearity at a wavelength of 1550 nm, achieving a modulation depth of 13.1% and a saturation intensity of 10.6 MW/cm<sup>2</sup>. At 1564.6 nm, this material generates soliton pulses with a pulse width of 1.08 ps and a modulation interval of 4 ps. By optimizing the resonator structure, tunable high-harmonic soliton pulses ranging from 4.5 to 333 MHz are realized. The enhanced nanostructured properties of this MOF material play a pivotal role in significantly boosting the performance of fiber lasers, offering enhanced flexibility and adaptability for optical signal transmission. This breakthrough also opens avenues for the development of advanced optoelectronic devices, including ultracompact optical switches, optical memory, and quantum communication technologies, marking a significant step toward the next generation of nanoenabled optoelectronic applications.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 42","pages":"20196–20204"},"PeriodicalIF":5.5000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MOF-Derived Nanoporous Co3O4 Dodecahedrons for Tunable High-Order Harmonic Soliton Pulsed Fiber Laser\",\"authors\":\"Baoyuan Liu*,&nbsp;, ,&nbsp;Fang Peng,&nbsp;, ,&nbsp;Yujiao Chen,&nbsp;, ,&nbsp;Wei Wang,&nbsp;, ,&nbsp;Zhiwen Pan,&nbsp;, ,&nbsp;Rui Zhang,&nbsp;, and ,&nbsp;Xiaohui Li*,&nbsp;\",\"doi\":\"10.1021/acsanm.5c02798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Metal–organic frameworks (MOFs) are a class of highly porous crystalline materials composed of metal centers and organic ligands, offering remarkable versatility in catalysis and optoelectronic applications due to their unique structural properties and exceptionally high specific surface areas. A nanostructured Co<sub>3</sub>O<sub>4</sub>-based dodecahedral cone-saturated absorber demonstrates significant nonlinearity at a wavelength of 1550 nm, achieving a modulation depth of 13.1% and a saturation intensity of 10.6 MW/cm<sup>2</sup>. At 1564.6 nm, this material generates soliton pulses with a pulse width of 1.08 ps and a modulation interval of 4 ps. By optimizing the resonator structure, tunable high-harmonic soliton pulses ranging from 4.5 to 333 MHz are realized. The enhanced nanostructured properties of this MOF material play a pivotal role in significantly boosting the performance of fiber lasers, offering enhanced flexibility and adaptability for optical signal transmission. This breakthrough also opens avenues for the development of advanced optoelectronic devices, including ultracompact optical switches, optical memory, and quantum communication technologies, marking a significant step toward the next generation of nanoenabled optoelectronic applications.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":\"8 42\",\"pages\":\"20196–20204\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsanm.5c02798\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.5c02798","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

金属有机骨架(mof)是一类由金属中心和有机配体组成的高多孔晶体材料,由于其独特的结构特性和极高的比表面积,在催化和光电子应用中具有显著的多功能性。纳米结构的co3o4基十二面体锥饱和吸收体在波长1550 nm处表现出明显的非线性,调制深度为13.1%,饱和强度为10.6 MW/cm2。在1564.6 nm处,该材料产生脉冲宽度为1.08 ps,调制间隔为4 ps的孤子脉冲。通过优化谐振腔结构,实现了4.5 ~ 333 MHz范围内的高谐波孤子脉冲可调谐。这种MOF材料的纳米结构特性的增强对显著提高光纤激光器的性能起着关键作用,为光信号传输提供了增强的灵活性和适应性。这一突破也为先进光电子器件的发展开辟了道路,包括超紧凑光开关、光存储器和量子通信技术,标志着向下一代纳米光电子应用迈出了重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

MOF-Derived Nanoporous Co3O4 Dodecahedrons for Tunable High-Order Harmonic Soliton Pulsed Fiber Laser

MOF-Derived Nanoporous Co3O4 Dodecahedrons for Tunable High-Order Harmonic Soliton Pulsed Fiber Laser

Metal–organic frameworks (MOFs) are a class of highly porous crystalline materials composed of metal centers and organic ligands, offering remarkable versatility in catalysis and optoelectronic applications due to their unique structural properties and exceptionally high specific surface areas. A nanostructured Co3O4-based dodecahedral cone-saturated absorber demonstrates significant nonlinearity at a wavelength of 1550 nm, achieving a modulation depth of 13.1% and a saturation intensity of 10.6 MW/cm2. At 1564.6 nm, this material generates soliton pulses with a pulse width of 1.08 ps and a modulation interval of 4 ps. By optimizing the resonator structure, tunable high-harmonic soliton pulses ranging from 4.5 to 333 MHz are realized. The enhanced nanostructured properties of this MOF material play a pivotal role in significantly boosting the performance of fiber lasers, offering enhanced flexibility and adaptability for optical signal transmission. This breakthrough also opens avenues for the development of advanced optoelectronic devices, including ultracompact optical switches, optical memory, and quantum communication technologies, marking a significant step toward the next generation of nanoenabled optoelectronic applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信