磁性纳米粒子在射频场下弛豫时间和SPA的两种实验测定方法:对纳米升温和热疗的影响

IF 5.5 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ignacio J. Bruvera, , , Giuliano Andrés Basso, , , Josefina Medina, , , Daniel Actis, , , Gustavo Pasquevich, , and , Pedro Mendoza Zélis*, 
{"title":"磁性纳米粒子在射频场下弛豫时间和SPA的两种实验测定方法:对纳米升温和热疗的影响","authors":"Ignacio J. Bruvera,&nbsp;, ,&nbsp;Giuliano Andrés Basso,&nbsp;, ,&nbsp;Josefina Medina,&nbsp;, ,&nbsp;Daniel Actis,&nbsp;, ,&nbsp;Gustavo Pasquevich,&nbsp;, and ,&nbsp;Pedro Mendoza Zélis*,&nbsp;","doi":"10.1021/acsanm.5c02740","DOIUrl":null,"url":null,"abstract":"<p >In applications such as hyperthermia and nanowarming, power dissipation arises when the time-dependent magnetization <i>M</i>(<i>t</i>) of an out-of-equilibrium system of nanoparticles lags behind the applied magnetic field <i>H</i>(<i>t</i>). The key parameter governing this process is the relaxation time τ, which induces a phase shift ϕ<sub><i>n</i></sub> between <i>H</i>(<i>t</i>) and each <i>n-</i>th harmonic component of <i>M</i>(<i>t</i>). In this work, we present two methods to obtain the effective value of τ from radiofrequency field (RF) magnetization measurements. One method derives the result directly from ϕ<sub><i>n</i></sub>, while the other fits the <i>M</i>(<i>H</i>) cycle using a time-delayed superparamagnetic response. We compare these methods applied to the variation of τ for magnetic nanoparticles under an RF field in two experiments: the solid-to-liquid transition of an aqueous suspension of particles and the effect of increasing concentration of the suspension.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 42","pages":"20188–20195"},"PeriodicalIF":5.5000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two Methods for the Experimental Determination of the Relaxation Time and SPA of Magnetic Nanoparticles under RF Fields: Implications for Nanowarming and Hyperthermia\",\"authors\":\"Ignacio J. Bruvera,&nbsp;, ,&nbsp;Giuliano Andrés Basso,&nbsp;, ,&nbsp;Josefina Medina,&nbsp;, ,&nbsp;Daniel Actis,&nbsp;, ,&nbsp;Gustavo Pasquevich,&nbsp;, and ,&nbsp;Pedro Mendoza Zélis*,&nbsp;\",\"doi\":\"10.1021/acsanm.5c02740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In applications such as hyperthermia and nanowarming, power dissipation arises when the time-dependent magnetization <i>M</i>(<i>t</i>) of an out-of-equilibrium system of nanoparticles lags behind the applied magnetic field <i>H</i>(<i>t</i>). The key parameter governing this process is the relaxation time τ, which induces a phase shift ϕ<sub><i>n</i></sub> between <i>H</i>(<i>t</i>) and each <i>n-</i>th harmonic component of <i>M</i>(<i>t</i>). In this work, we present two methods to obtain the effective value of τ from radiofrequency field (RF) magnetization measurements. One method derives the result directly from ϕ<sub><i>n</i></sub>, while the other fits the <i>M</i>(<i>H</i>) cycle using a time-delayed superparamagnetic response. We compare these methods applied to the variation of τ for magnetic nanoparticles under an RF field in two experiments: the solid-to-liquid transition of an aqueous suspension of particles and the effect of increasing concentration of the suspension.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":\"8 42\",\"pages\":\"20188–20195\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsanm.5c02740\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.5c02740","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在热疗和纳米加热等应用中,当非平衡纳米粒子系统的随时间磁化M(t)滞后于外加磁场H(t)时,功率耗散就会出现。控制这一过程的关键参数是弛豫时间τ,它在H(t)和M(t)的每个n次谐波分量之间引起相移ϕn。在这项工作中,我们提出了两种从射频场(RF)磁化测量中获得τ有效值的方法。一种方法直接从ϕn导出结果,而另一种方法使用延时超顺磁响应拟合M(H)周期。我们在两个实验中比较了这些方法在射频场下磁性纳米颗粒τ的变化:颗粒的水悬浮液的固-液转变和增加悬浮液浓度的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Two Methods for the Experimental Determination of the Relaxation Time and SPA of Magnetic Nanoparticles under RF Fields: Implications for Nanowarming and Hyperthermia

Two Methods for the Experimental Determination of the Relaxation Time and SPA of Magnetic Nanoparticles under RF Fields: Implications for Nanowarming and Hyperthermia

In applications such as hyperthermia and nanowarming, power dissipation arises when the time-dependent magnetization M(t) of an out-of-equilibrium system of nanoparticles lags behind the applied magnetic field H(t). The key parameter governing this process is the relaxation time τ, which induces a phase shift ϕn between H(t) and each n-th harmonic component of M(t). In this work, we present two methods to obtain the effective value of τ from radiofrequency field (RF) magnetization measurements. One method derives the result directly from ϕn, while the other fits the M(H) cycle using a time-delayed superparamagnetic response. We compare these methods applied to the variation of τ for magnetic nanoparticles under an RF field in two experiments: the solid-to-liquid transition of an aqueous suspension of particles and the effect of increasing concentration of the suspension.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信