预计气候变化将降低全球地下生态系统的多功能性。

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Tiancai Zhou,Jian Sun,Chongchong Ye,Xin Jing,Eryuan Liang,Xuyang Lu,Akira S Mori,Michael E Meadows,Josep Peñuelas
{"title":"预计气候变化将降低全球地下生态系统的多功能性。","authors":"Tiancai Zhou,Jian Sun,Chongchong Ye,Xin Jing,Eryuan Liang,Xuyang Lu,Akira S Mori,Michael E Meadows,Josep Peñuelas","doi":"10.1038/s41467-025-64453-4","DOIUrl":null,"url":null,"abstract":"Although climate change is known to abruptly shift ecosystem functions in drylands worldwide, the global response of belowground ecosystem multifunctionality (BEMF) to future climate change remains largely unknown. Herein, we use fifteen indicators associated with key ecosystem functions (e.g., belowground productivity, nutrient pools and cycling) to evaluate global BEMF by averaging, principal component analysis, and single-threshold approaches. Our results reveal marked spatial variation in functionality across Köppen climate biomes, indicating that BEMF is higher in polar and continental biomes compared to dry and tropical biomes. We further identify an abrupt shift in global BEMF at a mean annual temperature (MAT) threshold of approximately 16.4 °C. Globally, temperature and soil pH generate strong negative effects on BEMF in MAT ≤ 16.4 °C regions, whereas precipitation and plant species richness positively dominate the dynamics of BEMF in regions where MAT > 16.4 °C. Importantly, we predict ongoing climate change to result in a 20.8% loss of global BEMF under SSP585 by 2100, particularly in temperate and continental biomes. As future climate change is projected to increase, integrating in situ experiments and Earth system models into BEMF-climate studies is critical to the conservation and sustainability of ecosystem functions.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"-1 1","pages":"9337"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Climate change is predicted to reduce global belowground ecosystem multifunctionality.\",\"authors\":\"Tiancai Zhou,Jian Sun,Chongchong Ye,Xin Jing,Eryuan Liang,Xuyang Lu,Akira S Mori,Michael E Meadows,Josep Peñuelas\",\"doi\":\"10.1038/s41467-025-64453-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although climate change is known to abruptly shift ecosystem functions in drylands worldwide, the global response of belowground ecosystem multifunctionality (BEMF) to future climate change remains largely unknown. Herein, we use fifteen indicators associated with key ecosystem functions (e.g., belowground productivity, nutrient pools and cycling) to evaluate global BEMF by averaging, principal component analysis, and single-threshold approaches. Our results reveal marked spatial variation in functionality across Köppen climate biomes, indicating that BEMF is higher in polar and continental biomes compared to dry and tropical biomes. We further identify an abrupt shift in global BEMF at a mean annual temperature (MAT) threshold of approximately 16.4 °C. Globally, temperature and soil pH generate strong negative effects on BEMF in MAT ≤ 16.4 °C regions, whereas precipitation and plant species richness positively dominate the dynamics of BEMF in regions where MAT > 16.4 °C. Importantly, we predict ongoing climate change to result in a 20.8% loss of global BEMF under SSP585 by 2100, particularly in temperate and continental biomes. As future climate change is projected to increase, integrating in situ experiments and Earth system models into BEMF-climate studies is critical to the conservation and sustainability of ecosystem functions.\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"-1 1\",\"pages\":\"9337\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-64453-4\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-64453-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

虽然已知气候变化会突然改变全球旱地的生态系统功能,但地下生态系统多功能性(BEMF)对未来气候变化的全球响应在很大程度上仍然未知。在此,我们使用与关键生态系统功能(如地下生产力、养分池和循环)相关的15个指标,通过平均、主成分分析和单阈值方法来评估全球bef。我们的研究结果揭示了Köppen气候生物群系在功能上的显著空间差异,表明极地和大陆生物群系的BEMF高于干燥和热带生物群系。我们进一步确定了在年平均温度(MAT)阈值约16.4°C时全球BEMF的突变。在全球范围内,温度和土壤pH值在MAT≤16.4°C区域对BEMF产生强烈的负向影响,而在MAT≤16.4°C区域,降水和植物物种丰富度对BEMF动态具有正向影响。重要的是,我们预测,到2100年,持续的气候变化将导致SSP585下全球bef损失20.8%,特别是在温带和大陆生物群系。由于预计未来气候变化将加剧,将原位实验和地球系统模型整合到bemf气候研究中对生态系统功能的保护和可持续性至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Climate change is predicted to reduce global belowground ecosystem multifunctionality.
Although climate change is known to abruptly shift ecosystem functions in drylands worldwide, the global response of belowground ecosystem multifunctionality (BEMF) to future climate change remains largely unknown. Herein, we use fifteen indicators associated with key ecosystem functions (e.g., belowground productivity, nutrient pools and cycling) to evaluate global BEMF by averaging, principal component analysis, and single-threshold approaches. Our results reveal marked spatial variation in functionality across Köppen climate biomes, indicating that BEMF is higher in polar and continental biomes compared to dry and tropical biomes. We further identify an abrupt shift in global BEMF at a mean annual temperature (MAT) threshold of approximately 16.4 °C. Globally, temperature and soil pH generate strong negative effects on BEMF in MAT ≤ 16.4 °C regions, whereas precipitation and plant species richness positively dominate the dynamics of BEMF in regions where MAT > 16.4 °C. Importantly, we predict ongoing climate change to result in a 20.8% loss of global BEMF under SSP585 by 2100, particularly in temperate and continental biomes. As future climate change is projected to increase, integrating in situ experiments and Earth system models into BEMF-climate studies is critical to the conservation and sustainability of ecosystem functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信