通过对大规模夜间呼吸信号的深度学习促进睡眠健康公平。

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Zhongxu Zhuang,Biao Xue,Qiang An,Hui Chu,Yue Zhang,Rui Chen,Jing Xu,Ning Ding,Xiaochuan Cui,E Wang,Meilin Wang,Junyi Xin,Xuan Yang,Yan Xu,Yaxian Li,Chang-Hong Fu,Xiaohua Zhu,Mugen Peng,Hong Hong
{"title":"通过对大规模夜间呼吸信号的深度学习促进睡眠健康公平。","authors":"Zhongxu Zhuang,Biao Xue,Qiang An,Hui Chu,Yue Zhang,Rui Chen,Jing Xu,Ning Ding,Xiaochuan Cui,E Wang,Meilin Wang,Junyi Xin,Xuan Yang,Yan Xu,Yaxian Li,Chang-Hong Fu,Xiaohua Zhu,Mugen Peng,Hong Hong","doi":"10.1038/s41467-025-64340-y","DOIUrl":null,"url":null,"abstract":"Sleep disorders affect billions globally, yet diagnostic access remains limited by healthcare resource constraints. Here, we develop a deep learning framework that analyzes respiratory signals for remote sleep health monitoring, trained on 15,785 nights of data across diverse populations. Our approach achieves robust performance in four-stage sleep classification (82.13% accuracy on internal validation; 79.62% on external validation) and apnea-hypopnea index estimation (intraclass correlation coefficients 0.90 and 0.94, respectively). Through transfer learning, we adapt the model to radar-derived respiratory signals, enabling contactless monitoring in home environments. The framework demonstrates consistent performance across demographic subgroups, supports real-time processing through self-supervised learning techniques, and integrates with a remote sleep health management platform for clinical deployment. This approach bridges critical gaps in sleep healthcare accessibility, supporting population-level screening and monitoring, paving the way for scalable sleep healthcare, and advancing sleep health equity.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"200 1","pages":"9334"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing sleep health equity through deep learning on large-scale nocturnal respiratory signals.\",\"authors\":\"Zhongxu Zhuang,Biao Xue,Qiang An,Hui Chu,Yue Zhang,Rui Chen,Jing Xu,Ning Ding,Xiaochuan Cui,E Wang,Meilin Wang,Junyi Xin,Xuan Yang,Yan Xu,Yaxian Li,Chang-Hong Fu,Xiaohua Zhu,Mugen Peng,Hong Hong\",\"doi\":\"10.1038/s41467-025-64340-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sleep disorders affect billions globally, yet diagnostic access remains limited by healthcare resource constraints. Here, we develop a deep learning framework that analyzes respiratory signals for remote sleep health monitoring, trained on 15,785 nights of data across diverse populations. Our approach achieves robust performance in four-stage sleep classification (82.13% accuracy on internal validation; 79.62% on external validation) and apnea-hypopnea index estimation (intraclass correlation coefficients 0.90 and 0.94, respectively). Through transfer learning, we adapt the model to radar-derived respiratory signals, enabling contactless monitoring in home environments. The framework demonstrates consistent performance across demographic subgroups, supports real-time processing through self-supervised learning techniques, and integrates with a remote sleep health management platform for clinical deployment. This approach bridges critical gaps in sleep healthcare accessibility, supporting population-level screening and monitoring, paving the way for scalable sleep healthcare, and advancing sleep health equity.\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"200 1\",\"pages\":\"9334\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-64340-y\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-64340-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

睡眠障碍影响着全球数十亿人,但由于医疗资源的限制,获得诊断的机会仍然有限。在这里,我们开发了一个深度学习框架,分析远程睡眠健康监测的呼吸信号,对不同人群的15,785个夜晚的数据进行了训练。我们的方法在四阶段睡眠分类(内部验证的准确率为82.13%,外部验证的准确率为79.62%)和呼吸暂停-低呼吸指数估计(类内相关系数分别为0.90和0.94)方面取得了稳健的表现。通过迁移学习,我们使模型适应雷达衍生的呼吸信号,实现家庭环境中的非接触式监测。该框架展示了跨人口分组的一致性能,通过自我监督学习技术支持实时处理,并与临床部署的远程睡眠健康管理平台集成。这种方法弥补了睡眠卫生保健可及性方面的重大差距,支持人群水平的筛查和监测,为可扩展的睡眠卫生保健铺平了道路,并促进了睡眠卫生公平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advancing sleep health equity through deep learning on large-scale nocturnal respiratory signals.
Sleep disorders affect billions globally, yet diagnostic access remains limited by healthcare resource constraints. Here, we develop a deep learning framework that analyzes respiratory signals for remote sleep health monitoring, trained on 15,785 nights of data across diverse populations. Our approach achieves robust performance in four-stage sleep classification (82.13% accuracy on internal validation; 79.62% on external validation) and apnea-hypopnea index estimation (intraclass correlation coefficients 0.90 and 0.94, respectively). Through transfer learning, we adapt the model to radar-derived respiratory signals, enabling contactless monitoring in home environments. The framework demonstrates consistent performance across demographic subgroups, supports real-time processing through self-supervised learning techniques, and integrates with a remote sleep health management platform for clinical deployment. This approach bridges critical gaps in sleep healthcare accessibility, supporting population-level screening and monitoring, paving the way for scalable sleep healthcare, and advancing sleep health equity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信