{"title":"激动剂结合人TRPC3通道的结构机制。","authors":"Yikun Chen,Jiahe Zang,Wenjun Guo,Jiaxuan Xu,Miao Wei,Li Quan,Min Zhu,Xiaole Zhao,Hailin Peng,Yakun Wan,Lei Chen","doi":"10.1038/s41467-025-64435-6","DOIUrl":null,"url":null,"abstract":"TRPC3/6/7 channels are cation channels that are directly activated by the second messenger diacylglycerol (DAG). These channels play crucial physiological roles and are implicated in various disease conditions; however, the binding mechanism of DAG to these channels remains incompletely understood. In this study, we present the structures of human TRPC3 in complex with DAG or synthetic activators, 4n and GSK1702934A. The structural analysis reveals that DAG binds at the L2 site, located near the pore on the extracellular side of TRPC3. Functional assays confirmed that the L2 site serves as the activating site for DAG. Notably, both 4n and GSK1702934A competitively bind to the same site, facilitating channel activation. Moreover, based on the pharmacophore identified from the DAG-bound structure, we found that monoacylglycerols (MAGs) are endogenous activators of TRPC3/6/7 channels, providing new insights into their regulatory mechanisms.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"140 1","pages":"9343"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural mechanism of the agonist binding on human TRPC3 channel.\",\"authors\":\"Yikun Chen,Jiahe Zang,Wenjun Guo,Jiaxuan Xu,Miao Wei,Li Quan,Min Zhu,Xiaole Zhao,Hailin Peng,Yakun Wan,Lei Chen\",\"doi\":\"10.1038/s41467-025-64435-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"TRPC3/6/7 channels are cation channels that are directly activated by the second messenger diacylglycerol (DAG). These channels play crucial physiological roles and are implicated in various disease conditions; however, the binding mechanism of DAG to these channels remains incompletely understood. In this study, we present the structures of human TRPC3 in complex with DAG or synthetic activators, 4n and GSK1702934A. The structural analysis reveals that DAG binds at the L2 site, located near the pore on the extracellular side of TRPC3. Functional assays confirmed that the L2 site serves as the activating site for DAG. Notably, both 4n and GSK1702934A competitively bind to the same site, facilitating channel activation. Moreover, based on the pharmacophore identified from the DAG-bound structure, we found that monoacylglycerols (MAGs) are endogenous activators of TRPC3/6/7 channels, providing new insights into their regulatory mechanisms.\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"140 1\",\"pages\":\"9343\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-64435-6\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-64435-6","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Structural mechanism of the agonist binding on human TRPC3 channel.
TRPC3/6/7 channels are cation channels that are directly activated by the second messenger diacylglycerol (DAG). These channels play crucial physiological roles and are implicated in various disease conditions; however, the binding mechanism of DAG to these channels remains incompletely understood. In this study, we present the structures of human TRPC3 in complex with DAG or synthetic activators, 4n and GSK1702934A. The structural analysis reveals that DAG binds at the L2 site, located near the pore on the extracellular side of TRPC3. Functional assays confirmed that the L2 site serves as the activating site for DAG. Notably, both 4n and GSK1702934A competitively bind to the same site, facilitating channel activation. Moreover, based on the pharmacophore identified from the DAG-bound structure, we found that monoacylglycerols (MAGs) are endogenous activators of TRPC3/6/7 channels, providing new insights into their regulatory mechanisms.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.