Rong-Yue Wang,Jia-Peng Zhong,Yu-Qiong Li,De-Xuan Li,Jia-Zhou Meng,Keng-Bo Ding,Chuan-Hao Li,Zhao-Qing Liu
{"title":"用于高效过氧化氢生产的工程非晶/结晶Ni/NiO电催化剂。","authors":"Rong-Yue Wang,Jia-Peng Zhong,Yu-Qiong Li,De-Xuan Li,Jia-Zhou Meng,Keng-Bo Ding,Chuan-Hao Li,Zhao-Qing Liu","doi":"10.1021/acsnano.5c13941","DOIUrl":null,"url":null,"abstract":"Enhanced O2 adsorption and favorable oxygen-intermediate desorption are essential for efficient electrochemical hydrogen peroxide production (EHPP) via the two-electron oxygen reduction reaction (2e- ORR). Here, we report an amorphous/crystalline Ni-NiO electrocatalyst synthesized via a partial reduction strategy. By engineering the amorphous/crystalline interfacial strain through varying the reduction time, the optimized Ni/NiO catalyst achieves a hydrogen peroxide selectivity of 91.78% with a Faradaic efficiency of 97.47%. It maintains a high H2O2 yield of 949.5 mM/g-1cat h-1 across three electrode systems, outperforming most Ni-based benchmarks. Density functional theory calculations and in situ characterizations reveal that strain at unsaturated Ni sites promotes electron redistribution and Ni-O bond lengthening, thereby shifting the d-p band center difference to favor O2 adsorption while weakening *OOH binding. The enhanced O2 adsorption and accelerated *OOH desorption direct the ORR pathway toward the two-electron route for H2O2 generation. Furthermore, the in situ generated H2O2 effectively degrades organic pollutants, indicating its practical utility in water remediation. This work presents the strain engineering approach in amorphous/crystalline Ni/NiO heterostructures for high-performance EHPP and selective two-electron ORR.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"20 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering Amorphous/Crystalline Ni/NiO Electrocatalysts for Highly Efficient Hydrogen Peroxide Production.\",\"authors\":\"Rong-Yue Wang,Jia-Peng Zhong,Yu-Qiong Li,De-Xuan Li,Jia-Zhou Meng,Keng-Bo Ding,Chuan-Hao Li,Zhao-Qing Liu\",\"doi\":\"10.1021/acsnano.5c13941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Enhanced O2 adsorption and favorable oxygen-intermediate desorption are essential for efficient electrochemical hydrogen peroxide production (EHPP) via the two-electron oxygen reduction reaction (2e- ORR). Here, we report an amorphous/crystalline Ni-NiO electrocatalyst synthesized via a partial reduction strategy. By engineering the amorphous/crystalline interfacial strain through varying the reduction time, the optimized Ni/NiO catalyst achieves a hydrogen peroxide selectivity of 91.78% with a Faradaic efficiency of 97.47%. It maintains a high H2O2 yield of 949.5 mM/g-1cat h-1 across three electrode systems, outperforming most Ni-based benchmarks. Density functional theory calculations and in situ characterizations reveal that strain at unsaturated Ni sites promotes electron redistribution and Ni-O bond lengthening, thereby shifting the d-p band center difference to favor O2 adsorption while weakening *OOH binding. The enhanced O2 adsorption and accelerated *OOH desorption direct the ORR pathway toward the two-electron route for H2O2 generation. Furthermore, the in situ generated H2O2 effectively degrades organic pollutants, indicating its practical utility in water remediation. This work presents the strain engineering approach in amorphous/crystalline Ni/NiO heterostructures for high-performance EHPP and selective two-electron ORR.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.5c13941\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c13941","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Engineering Amorphous/Crystalline Ni/NiO Electrocatalysts for Highly Efficient Hydrogen Peroxide Production.
Enhanced O2 adsorption and favorable oxygen-intermediate desorption are essential for efficient electrochemical hydrogen peroxide production (EHPP) via the two-electron oxygen reduction reaction (2e- ORR). Here, we report an amorphous/crystalline Ni-NiO electrocatalyst synthesized via a partial reduction strategy. By engineering the amorphous/crystalline interfacial strain through varying the reduction time, the optimized Ni/NiO catalyst achieves a hydrogen peroxide selectivity of 91.78% with a Faradaic efficiency of 97.47%. It maintains a high H2O2 yield of 949.5 mM/g-1cat h-1 across three electrode systems, outperforming most Ni-based benchmarks. Density functional theory calculations and in situ characterizations reveal that strain at unsaturated Ni sites promotes electron redistribution and Ni-O bond lengthening, thereby shifting the d-p band center difference to favor O2 adsorption while weakening *OOH binding. The enhanced O2 adsorption and accelerated *OOH desorption direct the ORR pathway toward the two-electron route for H2O2 generation. Furthermore, the in situ generated H2O2 effectively degrades organic pollutants, indicating its practical utility in water remediation. This work presents the strain engineering approach in amorphous/crystalline Ni/NiO heterostructures for high-performance EHPP and selective two-electron ORR.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.