Yannik Kaiser,Christopher S Garris,Eliana Marinari,Hyung Shik Kim,Juhyun Oh,Martin Pedard,Elias A Halabi,Moonhyun Choi,Sepideh Parvanian,Rainer Kohler,Denis Migliorini,Ralph Weissleder
{"title":"通过植入物介导的小分子缓释靶向免疫抑制骨髓细胞以防止胶质母细胞瘤复发。","authors":"Yannik Kaiser,Christopher S Garris,Eliana Marinari,Hyung Shik Kim,Juhyun Oh,Martin Pedard,Elias A Halabi,Moonhyun Choi,Sepideh Parvanian,Rainer Kohler,Denis Migliorini,Ralph Weissleder","doi":"10.1038/s41551-025-01533-2","DOIUrl":null,"url":null,"abstract":"Glioblastoma is a highly aggressive brain tumour with a high risk of recurrence after surgery, even when combined with chemotherapy and radiotherapy. A major barrier to lasting treatment is the tumour's immunosuppressive environment, which is largely dominated by myeloid cells. Here we describe the development of a biodegradable implant to sustainably release immune-modulator small molecules to reprogram tumour-infiltrating myeloid cells toward a pro-inflammatory, antitumour phenotype in the surgical cavity after tumour removal. In immunocompetent mouse models, this therapy induces interleukin-12 expression in myeloid cells without systemic cytokine elevation, and increases the infiltration of CD8+ and CD4+ T cells. Over 50% of mice treated (in combination with radiotherapy and chemotherapy) remain tumour-free during the experimental course (80 days). We further treated human glioblastoma explants ex vivo with the therapy and observed increased interleukin-12 expression in tumour-infiltrating myeloid cells, supporting the translational potential of this strategy. This implantable system offers a promising approach to prevent glioblastoma recurrence by activating innate immunity and sustaining immune surveillance post-surgery.","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"28 1","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeting immunosuppressive myeloid cells via implant-mediated slow release of small molecules to prevent glioblastoma recurrence.\",\"authors\":\"Yannik Kaiser,Christopher S Garris,Eliana Marinari,Hyung Shik Kim,Juhyun Oh,Martin Pedard,Elias A Halabi,Moonhyun Choi,Sepideh Parvanian,Rainer Kohler,Denis Migliorini,Ralph Weissleder\",\"doi\":\"10.1038/s41551-025-01533-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Glioblastoma is a highly aggressive brain tumour with a high risk of recurrence after surgery, even when combined with chemotherapy and radiotherapy. A major barrier to lasting treatment is the tumour's immunosuppressive environment, which is largely dominated by myeloid cells. Here we describe the development of a biodegradable implant to sustainably release immune-modulator small molecules to reprogram tumour-infiltrating myeloid cells toward a pro-inflammatory, antitumour phenotype in the surgical cavity after tumour removal. In immunocompetent mouse models, this therapy induces interleukin-12 expression in myeloid cells without systemic cytokine elevation, and increases the infiltration of CD8+ and CD4+ T cells. Over 50% of mice treated (in combination with radiotherapy and chemotherapy) remain tumour-free during the experimental course (80 days). We further treated human glioblastoma explants ex vivo with the therapy and observed increased interleukin-12 expression in tumour-infiltrating myeloid cells, supporting the translational potential of this strategy. This implantable system offers a promising approach to prevent glioblastoma recurrence by activating innate immunity and sustaining immune surveillance post-surgery.\",\"PeriodicalId\":19063,\"journal\":{\"name\":\"Nature Biomedical Engineering\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41551-025-01533-2\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41551-025-01533-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Targeting immunosuppressive myeloid cells via implant-mediated slow release of small molecules to prevent glioblastoma recurrence.
Glioblastoma is a highly aggressive brain tumour with a high risk of recurrence after surgery, even when combined with chemotherapy and radiotherapy. A major barrier to lasting treatment is the tumour's immunosuppressive environment, which is largely dominated by myeloid cells. Here we describe the development of a biodegradable implant to sustainably release immune-modulator small molecules to reprogram tumour-infiltrating myeloid cells toward a pro-inflammatory, antitumour phenotype in the surgical cavity after tumour removal. In immunocompetent mouse models, this therapy induces interleukin-12 expression in myeloid cells without systemic cytokine elevation, and increases the infiltration of CD8+ and CD4+ T cells. Over 50% of mice treated (in combination with radiotherapy and chemotherapy) remain tumour-free during the experimental course (80 days). We further treated human glioblastoma explants ex vivo with the therapy and observed increased interleukin-12 expression in tumour-infiltrating myeloid cells, supporting the translational potential of this strategy. This implantable system offers a promising approach to prevent glioblastoma recurrence by activating innate immunity and sustaining immune surveillance post-surgery.
期刊介绍:
Nature Biomedical Engineering is an online-only monthly journal that was launched in January 2017. It aims to publish original research, reviews, and commentary focusing on applied biomedicine and health technology. The journal targets a diverse audience, including life scientists who are involved in developing experimental or computational systems and methods to enhance our understanding of human physiology. It also covers biomedical researchers and engineers who are engaged in designing or optimizing therapies, assays, devices, or procedures for diagnosing or treating diseases. Additionally, clinicians, who make use of research outputs to evaluate patient health or administer therapy in various clinical settings and healthcare contexts, are also part of the target audience.