二茂铁工程的双金属MOF纳米花通过双金属协同作用和结构精度提高了co2到ch4的选择性电催化。

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-10-22 DOI:10.1002/smll.202508771
Yan Xu,Yinggui Xia,Shuyan Fan,Wenyue Gao,Zhu Gao,Cuijuan Wang
{"title":"二茂铁工程的双金属MOF纳米花通过双金属协同作用和结构精度提高了co2到ch4的选择性电催化。","authors":"Yan Xu,Yinggui Xia,Shuyan Fan,Wenyue Gao,Zhu Gao,Cuijuan Wang","doi":"10.1002/smll.202508771","DOIUrl":null,"url":null,"abstract":"Electrocatalytic CO2 reduction to methane (CH4) is a promising route for sustainable energy conversion and carbon neutrality. However, limited control over intermediates and competition from the hydrogen evolution reaction (HER) restrict selectivity and efficiency. To address these challenges, a ferrocene-based bimetallic metal-organic framework MOF catalyst (NixIny-Fc/NF) with a hierarchical nanoflower architecture is developed, where dual-metal synergy modulates the electronic structure at active sites. Incorporating redox-active ferrocene units and optimizing the Ni/In ratio enhances active-site accessibility and tunes the electronic environment. Structural and compositional analyses, including scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS), confirm that Ni5In3-Fc/NF possesses a 3D porous nanoflower morphology, while X-ray photoelectron spectroscopy (XPS) reveals electronic interactions between Ni and In. Electrochemical tests show that the catalyst achieves 76% CH4 Faradaic efficiency at -0.8 V versus RHE and suppresses H2 evolution. Ni5In3-Fc/NF maintains stability and CH4 selectivity over 16 000 s of electrolysis. Density-functional theory (DFT) indicates that the bimetallic interface reduces the energy barrier for the rate-limiting *CO formation step, thereby accelerating the CO2-to-CH4 pathway. This study presents a synergistic strategy integrating dual-metal interaction and structural precision to enhance performance and durability in CO2 electroreduction, offering insights into the rational design of high-performance MOF catalysts.","PeriodicalId":228,"journal":{"name":"Small","volume":"41 1","pages":"e08771"},"PeriodicalIF":12.1000,"publicationDate":"2025-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ferrocene-Engineered Bimetallic MOF Nanoflowers Boost Selective CO2-to-CH4 Electrocatalysis via Dual-Metal Synergy and Structural Precision.\",\"authors\":\"Yan Xu,Yinggui Xia,Shuyan Fan,Wenyue Gao,Zhu Gao,Cuijuan Wang\",\"doi\":\"10.1002/smll.202508771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrocatalytic CO2 reduction to methane (CH4) is a promising route for sustainable energy conversion and carbon neutrality. However, limited control over intermediates and competition from the hydrogen evolution reaction (HER) restrict selectivity and efficiency. To address these challenges, a ferrocene-based bimetallic metal-organic framework MOF catalyst (NixIny-Fc/NF) with a hierarchical nanoflower architecture is developed, where dual-metal synergy modulates the electronic structure at active sites. Incorporating redox-active ferrocene units and optimizing the Ni/In ratio enhances active-site accessibility and tunes the electronic environment. Structural and compositional analyses, including scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS), confirm that Ni5In3-Fc/NF possesses a 3D porous nanoflower morphology, while X-ray photoelectron spectroscopy (XPS) reveals electronic interactions between Ni and In. Electrochemical tests show that the catalyst achieves 76% CH4 Faradaic efficiency at -0.8 V versus RHE and suppresses H2 evolution. Ni5In3-Fc/NF maintains stability and CH4 selectivity over 16 000 s of electrolysis. Density-functional theory (DFT) indicates that the bimetallic interface reduces the energy barrier for the rate-limiting *CO formation step, thereby accelerating the CO2-to-CH4 pathway. This study presents a synergistic strategy integrating dual-metal interaction and structural precision to enhance performance and durability in CO2 electroreduction, offering insights into the rational design of high-performance MOF catalysts.\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"41 1\",\"pages\":\"e08771\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202508771\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202508771","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

电催化CO2还原为甲烷(CH4)是一种很有前途的可持续能源转化和碳中和途径。然而,对中间体的有限控制和析氢反应(HER)的竞争限制了反应的选择性和效率。为了解决这些挑战,研究人员开发了一种基于二茂铁的双金属金属有机框架MOF催化剂(NixIny-Fc/NF),该催化剂具有层次化的纳米花结构,其中双金属协同作用调节活性位点的电子结构。加入氧化还原活性二茂铁单元并优化Ni/In比可提高活性位点的可及性并调节电子环境。扫描电镜(SEM)和能量色散x射线能谱(EDS)的结构和成分分析证实Ni5In3-Fc/NF具有三维多孔纳米花形态,而x射线光电子能谱(XPS)则揭示了Ni和In之间的电子相互作用。电化学测试表明,该催化剂在-0.8 V时相对于RHE达到76%的CH4法拉第效率,并抑制H2的生成。Ni5In3-Fc/NF在电解16000 s内保持稳定性和CH4选择性。密度泛函理论(DFT)表明,双金属界面降低了限速*CO生成步骤的能垒,从而加速了CO2-to-CH4的途径。本研究提出了一种整合双金属相互作用和结构精度的协同策略,以提高CO2电还原的性能和耐久性,为高性能MOF催化剂的合理设计提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ferrocene-Engineered Bimetallic MOF Nanoflowers Boost Selective CO2-to-CH4 Electrocatalysis via Dual-Metal Synergy and Structural Precision.
Electrocatalytic CO2 reduction to methane (CH4) is a promising route for sustainable energy conversion and carbon neutrality. However, limited control over intermediates and competition from the hydrogen evolution reaction (HER) restrict selectivity and efficiency. To address these challenges, a ferrocene-based bimetallic metal-organic framework MOF catalyst (NixIny-Fc/NF) with a hierarchical nanoflower architecture is developed, where dual-metal synergy modulates the electronic structure at active sites. Incorporating redox-active ferrocene units and optimizing the Ni/In ratio enhances active-site accessibility and tunes the electronic environment. Structural and compositional analyses, including scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS), confirm that Ni5In3-Fc/NF possesses a 3D porous nanoflower morphology, while X-ray photoelectron spectroscopy (XPS) reveals electronic interactions between Ni and In. Electrochemical tests show that the catalyst achieves 76% CH4 Faradaic efficiency at -0.8 V versus RHE and suppresses H2 evolution. Ni5In3-Fc/NF maintains stability and CH4 selectivity over 16 000 s of electrolysis. Density-functional theory (DFT) indicates that the bimetallic interface reduces the energy barrier for the rate-limiting *CO formation step, thereby accelerating the CO2-to-CH4 pathway. This study presents a synergistic strategy integrating dual-metal interaction and structural precision to enhance performance and durability in CO2 electroreduction, offering insights into the rational design of high-performance MOF catalysts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信