NiCp2吸附和自旋态调制STM尖端的原子模拟驱动设计。

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-10-22 DOI:10.1002/smll.202508320
Nanchen Dongfang,Federico Totti,Marcella Iannuzzi
{"title":"NiCp2吸附和自旋态调制STM尖端的原子模拟驱动设计。","authors":"Nanchen Dongfang,Federico Totti,Marcella Iannuzzi","doi":"10.1002/smll.202508320","DOIUrl":null,"url":null,"abstract":"Despite the widespread use of scanning tunneling microscopy (STM) in atomic-scale investigations, the influence of the tip's atomic structure remains insufficiently characterized. This study addresses the issue by analyzing the electronic and magnetic properties of transition-metal-functionalized STM tips using both multireference wavefunction methods and density functional theory. The results demonstrate that strong electron correlations in transition-metal-based tips must be accounted for to accurately describe the structural and magnetic parameters involved-an essential requirement for the correct setup of inelastic and scanning tunneling spectroscopy experiments. By considering both minimal tip models and larger, more realistic pyramid structures, the approach balances computational efficiency with experimental relevance. The mechanism of spin-state reduction in NiCp2-functionalized tips is clarified, revealing the central roles of charge transfer, molecular distortion, and metal-substrate hybridization. Furthermore, selective substitution of the Cu apex atom in Cu(111)-based tips with 3d transition metals allows controlled modulation of the NiCp2 spin state. This provides a practical strategy for designing STM tips with tailored magnetic properties. Overall, the findings establish a robust theoretical framework for interpreting complex molecule-substrate interactions in spintronic systems and support the development of next-generation spin-polarized STM tips and molecular spintronic devices.","PeriodicalId":228,"journal":{"name":"Small","volume":"101 1","pages":"e08320"},"PeriodicalIF":12.1000,"publicationDate":"2025-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atomistic Simulation-Driven Design of STM Tips for NiCp2 Adsorption and Spin-State Modulation.\",\"authors\":\"Nanchen Dongfang,Federico Totti,Marcella Iannuzzi\",\"doi\":\"10.1002/smll.202508320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite the widespread use of scanning tunneling microscopy (STM) in atomic-scale investigations, the influence of the tip's atomic structure remains insufficiently characterized. This study addresses the issue by analyzing the electronic and magnetic properties of transition-metal-functionalized STM tips using both multireference wavefunction methods and density functional theory. The results demonstrate that strong electron correlations in transition-metal-based tips must be accounted for to accurately describe the structural and magnetic parameters involved-an essential requirement for the correct setup of inelastic and scanning tunneling spectroscopy experiments. By considering both minimal tip models and larger, more realistic pyramid structures, the approach balances computational efficiency with experimental relevance. The mechanism of spin-state reduction in NiCp2-functionalized tips is clarified, revealing the central roles of charge transfer, molecular distortion, and metal-substrate hybridization. Furthermore, selective substitution of the Cu apex atom in Cu(111)-based tips with 3d transition metals allows controlled modulation of the NiCp2 spin state. This provides a practical strategy for designing STM tips with tailored magnetic properties. Overall, the findings establish a robust theoretical framework for interpreting complex molecule-substrate interactions in spintronic systems and support the development of next-generation spin-polarized STM tips and molecular spintronic devices.\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"101 1\",\"pages\":\"e08320\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202508320\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202508320","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

尽管扫描隧道显微镜(STM)在原子尺度研究中得到了广泛的应用,但尖端原子结构的影响仍然没有得到充分的表征。本研究通过使用多参考波函数方法和密度泛函理论分析过渡金属功能化STM尖端的电子和磁性能来解决这一问题。结果表明,必须考虑过渡金属基尖端的强电子相关性,以准确描述所涉及的结构和磁性参数,这是正确设置非弹性和扫描隧道光谱实验的基本要求。通过考虑最小尖端模型和更大、更真实的金字塔结构,该方法平衡了计算效率和实验相关性。阐明了nicp2功能化尖端的自旋态还原机制,揭示了电荷转移、分子畸变和金属-底物杂化的核心作用。此外,用三维过渡金属选择性取代Cu(111)基尖端中的Cu顶点原子,可以控制NiCp2的自旋状态。这为设计具有定制磁性的STM尖端提供了一种实用的策略。总的来说,这些发现为解释自旋电子系统中复杂的分子-底物相互作用建立了一个强大的理论框架,并为下一代自旋极化STM尖端和分子自旋电子器件的发展提供了支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Atomistic Simulation-Driven Design of STM Tips for NiCp2 Adsorption and Spin-State Modulation.
Despite the widespread use of scanning tunneling microscopy (STM) in atomic-scale investigations, the influence of the tip's atomic structure remains insufficiently characterized. This study addresses the issue by analyzing the electronic and magnetic properties of transition-metal-functionalized STM tips using both multireference wavefunction methods and density functional theory. The results demonstrate that strong electron correlations in transition-metal-based tips must be accounted for to accurately describe the structural and magnetic parameters involved-an essential requirement for the correct setup of inelastic and scanning tunneling spectroscopy experiments. By considering both minimal tip models and larger, more realistic pyramid structures, the approach balances computational efficiency with experimental relevance. The mechanism of spin-state reduction in NiCp2-functionalized tips is clarified, revealing the central roles of charge transfer, molecular distortion, and metal-substrate hybridization. Furthermore, selective substitution of the Cu apex atom in Cu(111)-based tips with 3d transition metals allows controlled modulation of the NiCp2 spin state. This provides a practical strategy for designing STM tips with tailored magnetic properties. Overall, the findings establish a robust theoretical framework for interpreting complex molecule-substrate interactions in spintronic systems and support the development of next-generation spin-polarized STM tips and molecular spintronic devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信