基于常规临床实验室参数的慢性阻塞性肺疾病急性加重的机器学习诊断模型

IF 4.8 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Youpeng Chen,Yabang Chen,Junquan Sun,Yifei Xie,Jiancai Lu,Enzhong Li,Qingqing Yang,Yu Guo,Jiana Zhang,Haojie Wu,Zhangkai J Cheng,Baoqing Sun
{"title":"基于常规临床实验室参数的慢性阻塞性肺疾病急性加重的机器学习诊断模型","authors":"Youpeng Chen,Yabang Chen,Junquan Sun,Yifei Xie,Jiancai Lu,Enzhong Li,Qingqing Yang,Yu Guo,Jiana Zhang,Haojie Wu,Zhangkai J Cheng,Baoqing Sun","doi":"10.1111/nyas.70080","DOIUrl":null,"url":null,"abstract":"Acute exacerbation of chronic obstructive pulmonary disease (COPD), or AECOPD, significantly increases disease burden yet lacks objective diagnostic criteria. We aimed to develop a machine learning model for AECOPD diagnosis using routine laboratory parameters. We analyzed records from 25,965 COPD patients at the First Affiliated Hospital of Guangzhou Medical University, with patients randomized 7:3 into training and test cohorts. We evaluated 113 model combinations from 12 machine learning algorithms, assessing performance through receiver operating characteristic analysis, calibration curves, and decision curve analysis. The generalized linear model boosting + random forest (glmBoost + RF) model demonstrated excellent diagnostic performance (training area under the curve [AUC] = 0.993, test AUC = 0.834) utilizing only nine variables: age, lymphocyte percentage, calcium, hemoglobin, eosinophil percentage, potassium, platelet distribution width, monocytes count, and mean corpuscular hemoglobin concentration. This streamlined model showed performance comparable to the more complex Lasso + RF model (48 variables) with superior clinical applicability. Both models exhibited excellent calibration performance (mean absolute error = 0.012-0.013) and maintained consistent performance across gender-stratified populations. A machine learning model utilizing nine routine clinical laboratory parameters effectively distinguishes AECOPD from stable COPD, providing an objective diagnostic tool applicable across diverse healthcare settings, particularly in resource-limited facilities.","PeriodicalId":8250,"journal":{"name":"Annals of the New York Academy of Sciences","volume":"58 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning-Based Diagnostic Model for Acute Exacerbation of Chronic Obstructive Pulmonary Disease Using Routine Clinical Laboratory Parameters.\",\"authors\":\"Youpeng Chen,Yabang Chen,Junquan Sun,Yifei Xie,Jiancai Lu,Enzhong Li,Qingqing Yang,Yu Guo,Jiana Zhang,Haojie Wu,Zhangkai J Cheng,Baoqing Sun\",\"doi\":\"10.1111/nyas.70080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Acute exacerbation of chronic obstructive pulmonary disease (COPD), or AECOPD, significantly increases disease burden yet lacks objective diagnostic criteria. We aimed to develop a machine learning model for AECOPD diagnosis using routine laboratory parameters. We analyzed records from 25,965 COPD patients at the First Affiliated Hospital of Guangzhou Medical University, with patients randomized 7:3 into training and test cohorts. We evaluated 113 model combinations from 12 machine learning algorithms, assessing performance through receiver operating characteristic analysis, calibration curves, and decision curve analysis. The generalized linear model boosting + random forest (glmBoost + RF) model demonstrated excellent diagnostic performance (training area under the curve [AUC] = 0.993, test AUC = 0.834) utilizing only nine variables: age, lymphocyte percentage, calcium, hemoglobin, eosinophil percentage, potassium, platelet distribution width, monocytes count, and mean corpuscular hemoglobin concentration. This streamlined model showed performance comparable to the more complex Lasso + RF model (48 variables) with superior clinical applicability. Both models exhibited excellent calibration performance (mean absolute error = 0.012-0.013) and maintained consistent performance across gender-stratified populations. A machine learning model utilizing nine routine clinical laboratory parameters effectively distinguishes AECOPD from stable COPD, providing an objective diagnostic tool applicable across diverse healthcare settings, particularly in resource-limited facilities.\",\"PeriodicalId\":8250,\"journal\":{\"name\":\"Annals of the New York Academy of Sciences\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of the New York Academy of Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1111/nyas.70080\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the New York Academy of Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1111/nyas.70080","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

慢性阻塞性肺疾病(COPD)急性加重(AECOPD)显著增加疾病负担,但缺乏客观的诊断标准。我们的目标是开发一个使用常规实验室参数诊断AECOPD的机器学习模型。我们分析了广州医科大学第一附属医院25,965例COPD患者的记录,将患者按7:3随机分为训练组和试验组。我们评估了来自12种机器学习算法的113种模型组合,通过接受者工作特征分析、校准曲线和决策曲线分析来评估性能。广义线性模型增强+随机森林(glmBoost + RF)模型仅利用年龄、淋巴细胞百分比、钙、血红蛋白、嗜酸性粒细胞百分比、钾、血小板分布宽度、单核细胞计数和平均红细胞血红蛋白浓度9个变量,就显示出优异的诊断性能(曲线下训练面积[AUC] = 0.993,检验AUC = 0.834)。该流线型模型的性能与更复杂的Lasso + RF模型(48个变量)相当,具有更好的临床适用性。两种模型均表现出优异的校准性能(平均绝对误差= 0.012-0.013),并在不同性别人群中保持一致的校准性能。利用9个常规临床实验室参数的机器学习模型有效区分AECOPD和稳定型COPD,提供了一种适用于不同医疗机构的客观诊断工具,特别是在资源有限的医疗机构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning-Based Diagnostic Model for Acute Exacerbation of Chronic Obstructive Pulmonary Disease Using Routine Clinical Laboratory Parameters.
Acute exacerbation of chronic obstructive pulmonary disease (COPD), or AECOPD, significantly increases disease burden yet lacks objective diagnostic criteria. We aimed to develop a machine learning model for AECOPD diagnosis using routine laboratory parameters. We analyzed records from 25,965 COPD patients at the First Affiliated Hospital of Guangzhou Medical University, with patients randomized 7:3 into training and test cohorts. We evaluated 113 model combinations from 12 machine learning algorithms, assessing performance through receiver operating characteristic analysis, calibration curves, and decision curve analysis. The generalized linear model boosting + random forest (glmBoost + RF) model demonstrated excellent diagnostic performance (training area under the curve [AUC] = 0.993, test AUC = 0.834) utilizing only nine variables: age, lymphocyte percentage, calcium, hemoglobin, eosinophil percentage, potassium, platelet distribution width, monocytes count, and mean corpuscular hemoglobin concentration. This streamlined model showed performance comparable to the more complex Lasso + RF model (48 variables) with superior clinical applicability. Both models exhibited excellent calibration performance (mean absolute error = 0.012-0.013) and maintained consistent performance across gender-stratified populations. A machine learning model utilizing nine routine clinical laboratory parameters effectively distinguishes AECOPD from stable COPD, providing an objective diagnostic tool applicable across diverse healthcare settings, particularly in resource-limited facilities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of the New York Academy of Sciences
Annals of the New York Academy of Sciences 综合性期刊-综合性期刊
CiteScore
11.00
自引率
1.90%
发文量
193
审稿时长
2-4 weeks
期刊介绍: Published on behalf of the New York Academy of Sciences, Annals of the New York Academy of Sciences provides multidisciplinary perspectives on research of current scientific interest with far-reaching implications for the wider scientific community and society at large. Each special issue assembles the best thinking of key contributors to a field of investigation at a time when emerging developments offer the promise of new insight. Individually themed, Annals special issues stimulate new ways to think about science by providing a neutral forum for discourse—within and across many institutions and fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信