Manel M. Habel , Adrian C. Williams , Vitaliy V. Khutoryanskiy
{"title":"利用涡虫迁移率评价苯扎氯铵的毒理学:人工和数字跟踪方法的比较。","authors":"Manel M. Habel , Adrian C. Williams , Vitaliy V. Khutoryanskiy","doi":"10.1016/j.etap.2025.104850","DOIUrl":null,"url":null,"abstract":"<div><div>The principle of the 3Rs—Reduction, Refinement, and Replacement—encourages minimizing animal use, improving experimental design, and developing alternative models for toxicology testing. Among such models, planaria (aquatic flatworms) have gained increasing attention in pharmacology, regenerative medicine, and toxicology because of their simple anatomy, high environmental sensitivity, exceptional regenerative ability, and ease of laboratory maintenance. In this study, we examined the effects of benzalkonium chloride (BAC)—a commonly used pharmaceutical excipient with antimicrobial and permeability-enhancing properties, as well as a known environmental toxicant—on the locomotor activity of <em>Schmidtea mediterranea</em> using both manual assessment and Lolitrack video-tracking software. Six concentrations of BAC (5–1000 μg/mL) and a negative control were tested. Both approaches showed an overall reduction in locomotor activity over time, though manual analysis indicated a transient stimulation at lower concentrations. The software-based method demonstrated greater reliability, precision, and objectivity, making it preferable for toxicity evaluation in planaria.</div></div>","PeriodicalId":11775,"journal":{"name":"Environmental toxicology and pharmacology","volume":"120 ","pages":"Article 104850"},"PeriodicalIF":4.2000,"publicationDate":"2025-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toxicological assessment of benzalkonium chloride using planaria mobility: A comparison of manual and digital tracking methods\",\"authors\":\"Manel M. Habel , Adrian C. Williams , Vitaliy V. Khutoryanskiy\",\"doi\":\"10.1016/j.etap.2025.104850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The principle of the 3Rs—Reduction, Refinement, and Replacement—encourages minimizing animal use, improving experimental design, and developing alternative models for toxicology testing. Among such models, planaria (aquatic flatworms) have gained increasing attention in pharmacology, regenerative medicine, and toxicology because of their simple anatomy, high environmental sensitivity, exceptional regenerative ability, and ease of laboratory maintenance. In this study, we examined the effects of benzalkonium chloride (BAC)—a commonly used pharmaceutical excipient with antimicrobial and permeability-enhancing properties, as well as a known environmental toxicant—on the locomotor activity of <em>Schmidtea mediterranea</em> using both manual assessment and Lolitrack video-tracking software. Six concentrations of BAC (5–1000 μg/mL) and a negative control were tested. Both approaches showed an overall reduction in locomotor activity over time, though manual analysis indicated a transient stimulation at lower concentrations. The software-based method demonstrated greater reliability, precision, and objectivity, making it preferable for toxicity evaluation in planaria.</div></div>\",\"PeriodicalId\":11775,\"journal\":{\"name\":\"Environmental toxicology and pharmacology\",\"volume\":\"120 \",\"pages\":\"Article 104850\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental toxicology and pharmacology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S138266892500225X\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental toxicology and pharmacology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138266892500225X","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Toxicological assessment of benzalkonium chloride using planaria mobility: A comparison of manual and digital tracking methods
The principle of the 3Rs—Reduction, Refinement, and Replacement—encourages minimizing animal use, improving experimental design, and developing alternative models for toxicology testing. Among such models, planaria (aquatic flatworms) have gained increasing attention in pharmacology, regenerative medicine, and toxicology because of their simple anatomy, high environmental sensitivity, exceptional regenerative ability, and ease of laboratory maintenance. In this study, we examined the effects of benzalkonium chloride (BAC)—a commonly used pharmaceutical excipient with antimicrobial and permeability-enhancing properties, as well as a known environmental toxicant—on the locomotor activity of Schmidtea mediterranea using both manual assessment and Lolitrack video-tracking software. Six concentrations of BAC (5–1000 μg/mL) and a negative control were tested. Both approaches showed an overall reduction in locomotor activity over time, though manual analysis indicated a transient stimulation at lower concentrations. The software-based method demonstrated greater reliability, precision, and objectivity, making it preferable for toxicity evaluation in planaria.
期刊介绍:
Environmental Toxicology and Pharmacology publishes the results of studies concerning toxic and pharmacological effects of (human and veterinary) drugs and of environmental contaminants in animals and man.
Areas of special interest are: molecular mechanisms of toxicity, biotransformation and toxicokinetics (including toxicokinetic modelling), molecular, biochemical and physiological mechanisms explaining differences in sensitivity between species and individuals, the characterisation of pathophysiological models and mechanisms involved in the development of effects and the identification of biological markers that can be used to study exposure and effects in man and animals.
In addition to full length papers, short communications, full-length reviews and mini-reviews, Environmental Toxicology and Pharmacology will publish in depth assessments of special problem areas. The latter publications may exceed the length of a full length paper three to fourfold. A basic requirement is that the assessments are made under the auspices of international groups of leading experts in the fields concerned. The information examined may either consist of data that were already published, or of new data that were obtained within the framework of collaborative research programmes. Provision is also made for the acceptance of minireviews on (classes of) compounds, toxicities or mechanisms, debating recent advances in rapidly developing fields that fall within the scope of the journal.