{"title":"电磁场和氧化应激:与癌症、神经系统疾病和行为障碍的发展有关。","authors":"Željko Leković","doi":"10.1080/15368378.2025.2567872","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Epidemiological studies suggest an association between exposure to electromagnetic fields (EMFs) and an increased incidence of malignant, cardiovascular, and neurodegenerative diseases. This study aims to elucidate the fundamental principles and plausible mechanisms by which EMFs may influence physiological and pathological processes that lead to disease development.</p><p><strong>Materials and methods: </strong>Published reports of oxidative stress, DNA damage, and disease risk related to EMF exposure were examined. The literature review provided the foundation for building a new conceptual model called the Electromagnetic Pathogenesis (EMP) model.</p><p><strong>Mechanisms: </strong>The EMP model proposes an increase in the probability of electron tunneling through the mitochondrial electron transport chain as the primary pathophysiological mechanism triggered by non-ionizing EMFs. Induced electric fields and quantum tunneling may enhance electron leakage during mitochondrial respiration, which is a major source of free radicals.</p><p><strong>Findings: </strong>There is a deep connection between quantum tunneling, entropy, and Heisenberg's principle. As a direct consequence of Heisenberg's principle, еlectron tunneling is essentially involved in free radical production and entropy generation in cells. Both normal aging and chronic diseases may be considered as the biologic manifestations of increasing entropy. Heisenberg's principle underlies normal aging and sets the limit to life expectancy.</p><p><strong>Social implications: </strong>The human brain, particularly the structural and functional networks that support social communication, is highly vulnerable to oxidative stress associated with EMF exposure. Long-term exposure may negatively affect social and reproductive behaviors in both men and women, potentially contributing to a decline in fertility rates and the acceleration of population aging.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":" ","pages":"1-25"},"PeriodicalIF":1.5000,"publicationDate":"2025-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electromagnetic fields and oxidative stress: The link to the development of cancer, neurological diseases, and behavioral disorders.\",\"authors\":\"Željko Leković\",\"doi\":\"10.1080/15368378.2025.2567872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Epidemiological studies suggest an association between exposure to electromagnetic fields (EMFs) and an increased incidence of malignant, cardiovascular, and neurodegenerative diseases. This study aims to elucidate the fundamental principles and plausible mechanisms by which EMFs may influence physiological and pathological processes that lead to disease development.</p><p><strong>Materials and methods: </strong>Published reports of oxidative stress, DNA damage, and disease risk related to EMF exposure were examined. The literature review provided the foundation for building a new conceptual model called the Electromagnetic Pathogenesis (EMP) model.</p><p><strong>Mechanisms: </strong>The EMP model proposes an increase in the probability of electron tunneling through the mitochondrial electron transport chain as the primary pathophysiological mechanism triggered by non-ionizing EMFs. Induced electric fields and quantum tunneling may enhance electron leakage during mitochondrial respiration, which is a major source of free radicals.</p><p><strong>Findings: </strong>There is a deep connection between quantum tunneling, entropy, and Heisenberg's principle. As a direct consequence of Heisenberg's principle, еlectron tunneling is essentially involved in free radical production and entropy generation in cells. Both normal aging and chronic diseases may be considered as the biologic manifestations of increasing entropy. Heisenberg's principle underlies normal aging and sets the limit to life expectancy.</p><p><strong>Social implications: </strong>The human brain, particularly the structural and functional networks that support social communication, is highly vulnerable to oxidative stress associated with EMF exposure. Long-term exposure may negatively affect social and reproductive behaviors in both men and women, potentially contributing to a decline in fertility rates and the acceleration of population aging.</p>\",\"PeriodicalId\":50544,\"journal\":{\"name\":\"Electromagnetic Biology and Medicine\",\"volume\":\" \",\"pages\":\"1-25\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electromagnetic Biology and Medicine\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/15368378.2025.2567872\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electromagnetic Biology and Medicine","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15368378.2025.2567872","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
Electromagnetic fields and oxidative stress: The link to the development of cancer, neurological diseases, and behavioral disorders.
Background: Epidemiological studies suggest an association between exposure to electromagnetic fields (EMFs) and an increased incidence of malignant, cardiovascular, and neurodegenerative diseases. This study aims to elucidate the fundamental principles and plausible mechanisms by which EMFs may influence physiological and pathological processes that lead to disease development.
Materials and methods: Published reports of oxidative stress, DNA damage, and disease risk related to EMF exposure were examined. The literature review provided the foundation for building a new conceptual model called the Electromagnetic Pathogenesis (EMP) model.
Mechanisms: The EMP model proposes an increase in the probability of electron tunneling through the mitochondrial electron transport chain as the primary pathophysiological mechanism triggered by non-ionizing EMFs. Induced electric fields and quantum tunneling may enhance electron leakage during mitochondrial respiration, which is a major source of free radicals.
Findings: There is a deep connection between quantum tunneling, entropy, and Heisenberg's principle. As a direct consequence of Heisenberg's principle, еlectron tunneling is essentially involved in free radical production and entropy generation in cells. Both normal aging and chronic diseases may be considered as the biologic manifestations of increasing entropy. Heisenberg's principle underlies normal aging and sets the limit to life expectancy.
Social implications: The human brain, particularly the structural and functional networks that support social communication, is highly vulnerable to oxidative stress associated with EMF exposure. Long-term exposure may negatively affect social and reproductive behaviors in both men and women, potentially contributing to a decline in fertility rates and the acceleration of population aging.
期刊介绍:
Aims & Scope: Electromagnetic Biology and Medicine, publishes peer-reviewed research articles on the biological effects and medical applications of non-ionizing electromagnetic fields (from extremely-low frequency to radiofrequency). Topic examples include in vitro and in vivo studies, epidemiological investigation, mechanism and mode of interaction between non-ionizing electromagnetic fields and biological systems. In addition to publishing original articles, the journal also publishes meeting summaries and reports, and reviews on selected topics.