{"title":"基于机器学习算法的多模态超声在TI-RADS 4类甲状腺良恶性结节诊断中的价值:单中心回顾性研究","authors":"Minglei Ren, Zengdi Yang, Ying Fu, Zhichun Chen, Ying Shi, Yongyan Lv","doi":"10.2174/0115734056404285251006113649","DOIUrl":null,"url":null,"abstract":"<p><p><p> Introduction: Ultrasound is routinely used for thyroid nodule diagnosis, yet distinguishing benign from malignant TI-RADS category 4 nodules remains challenging. This study has integrated two-dimensional ultrasound, shear wave elastography (SWE), and contrast-enhanced ultrasound (CEUS) features via machine learning to improve diagnostic accuracy for these nodules. </p> <p> Methods: A total of 117 TI-RADS 4 thyroid nodules from 108 patients were included and classified as benign or malignant based on pathological results. Two-dimensional ultrasound, CEUS, and SWE were compared. Predictive features were selected using LASSO regression. Feature importance was further validated using Random Forest, SVM, and XGBoost algorithms. A logistic regression model was constructed and visualized as a nomogram. Model performance was assessed using receiver operating characteristic (ROC) analysis, calibration curves, and decision curve analysis (DCA). </p> <p> Results: Malignant nodules exhibited significantly elevated serum FT3, FT4, FT3/FT4, TSH, and TI-RADS scores compared to benign lesions. Key imaging discriminators included unclear boundaries, aspect ratio ≥1, low internal echo, microcalcifications on ultrasound; enhancement degree, circumferential enhancement, and excretion on CEUS; and elevated SWE values (Emax, Emean, Esd, etc.) and altered CEUS quantitative parameters (PE, WiR, WoR, etc.) (all P< 0.05). A nomogram integrating four optimal predictors, including Emax, FT4, TI-RADS, and ΔPE, demonstrated robust predictive performance upon validation by ROC, calibration, and DCA curve analysis. </p> <p> Discussion: The nomogram incorporating Emax, FT4, TI-RADS, and ΔPE showed high predictive accuracy, particularly for papillary carcinoma in TI-RADS 4 nodules. Its applicability may, however, be constrained by the single-center retrospective design and limited pathological coverage. </p> <p> Conclusion: The multimodal ultrasound-based machine learning model effectively predicted malignancy in TI-RADS category 4 thyroid nodules. </p>.</p>","PeriodicalId":54215,"journal":{"name":"Current Medical Imaging Reviews","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Value of Multimodal Ultrasound Based on Machine Learning Algorithms in the Diagnosis of Benign and Malignant Thyroid Nodules of TI-RADS Category 4: A Single-Center Retrospective Study.\",\"authors\":\"Minglei Ren, Zengdi Yang, Ying Fu, Zhichun Chen, Ying Shi, Yongyan Lv\",\"doi\":\"10.2174/0115734056404285251006113649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><p> Introduction: Ultrasound is routinely used for thyroid nodule diagnosis, yet distinguishing benign from malignant TI-RADS category 4 nodules remains challenging. This study has integrated two-dimensional ultrasound, shear wave elastography (SWE), and contrast-enhanced ultrasound (CEUS) features via machine learning to improve diagnostic accuracy for these nodules. </p> <p> Methods: A total of 117 TI-RADS 4 thyroid nodules from 108 patients were included and classified as benign or malignant based on pathological results. Two-dimensional ultrasound, CEUS, and SWE were compared. Predictive features were selected using LASSO regression. Feature importance was further validated using Random Forest, SVM, and XGBoost algorithms. A logistic regression model was constructed and visualized as a nomogram. Model performance was assessed using receiver operating characteristic (ROC) analysis, calibration curves, and decision curve analysis (DCA). </p> <p> Results: Malignant nodules exhibited significantly elevated serum FT3, FT4, FT3/FT4, TSH, and TI-RADS scores compared to benign lesions. Key imaging discriminators included unclear boundaries, aspect ratio ≥1, low internal echo, microcalcifications on ultrasound; enhancement degree, circumferential enhancement, and excretion on CEUS; and elevated SWE values (Emax, Emean, Esd, etc.) and altered CEUS quantitative parameters (PE, WiR, WoR, etc.) (all P< 0.05). A nomogram integrating four optimal predictors, including Emax, FT4, TI-RADS, and ΔPE, demonstrated robust predictive performance upon validation by ROC, calibration, and DCA curve analysis. </p> <p> Discussion: The nomogram incorporating Emax, FT4, TI-RADS, and ΔPE showed high predictive accuracy, particularly for papillary carcinoma in TI-RADS 4 nodules. Its applicability may, however, be constrained by the single-center retrospective design and limited pathological coverage. </p> <p> Conclusion: The multimodal ultrasound-based machine learning model effectively predicted malignancy in TI-RADS category 4 thyroid nodules. </p>.</p>\",\"PeriodicalId\":54215,\"journal\":{\"name\":\"Current Medical Imaging Reviews\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Medical Imaging Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115734056404285251006113649\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Medical Imaging Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115734056404285251006113649","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
The Value of Multimodal Ultrasound Based on Machine Learning Algorithms in the Diagnosis of Benign and Malignant Thyroid Nodules of TI-RADS Category 4: A Single-Center Retrospective Study.
Introduction: Ultrasound is routinely used for thyroid nodule diagnosis, yet distinguishing benign from malignant TI-RADS category 4 nodules remains challenging. This study has integrated two-dimensional ultrasound, shear wave elastography (SWE), and contrast-enhanced ultrasound (CEUS) features via machine learning to improve diagnostic accuracy for these nodules.
Methods: A total of 117 TI-RADS 4 thyroid nodules from 108 patients were included and classified as benign or malignant based on pathological results. Two-dimensional ultrasound, CEUS, and SWE were compared. Predictive features were selected using LASSO regression. Feature importance was further validated using Random Forest, SVM, and XGBoost algorithms. A logistic regression model was constructed and visualized as a nomogram. Model performance was assessed using receiver operating characteristic (ROC) analysis, calibration curves, and decision curve analysis (DCA).
Results: Malignant nodules exhibited significantly elevated serum FT3, FT4, FT3/FT4, TSH, and TI-RADS scores compared to benign lesions. Key imaging discriminators included unclear boundaries, aspect ratio ≥1, low internal echo, microcalcifications on ultrasound; enhancement degree, circumferential enhancement, and excretion on CEUS; and elevated SWE values (Emax, Emean, Esd, etc.) and altered CEUS quantitative parameters (PE, WiR, WoR, etc.) (all P< 0.05). A nomogram integrating four optimal predictors, including Emax, FT4, TI-RADS, and ΔPE, demonstrated robust predictive performance upon validation by ROC, calibration, and DCA curve analysis.
Discussion: The nomogram incorporating Emax, FT4, TI-RADS, and ΔPE showed high predictive accuracy, particularly for papillary carcinoma in TI-RADS 4 nodules. Its applicability may, however, be constrained by the single-center retrospective design and limited pathological coverage.
Conclusion: The multimodal ultrasound-based machine learning model effectively predicted malignancy in TI-RADS category 4 thyroid nodules.
期刊介绍:
Current Medical Imaging Reviews publishes frontier review articles, original research articles, drug clinical trial studies and guest edited thematic issues on all the latest advances on medical imaging dedicated to clinical research. All relevant areas are covered by the journal, including advances in the diagnosis, instrumentation and therapeutic applications related to all modern medical imaging techniques.
The journal is essential reading for all clinicians and researchers involved in medical imaging and diagnosis.