Cong You, Mei Wang, Jiangyi Wang, Tingting Lian, Quanzhong Liu
{"title":"用衣原体φCPG1蛋白IN5和精氨酸-甘氨酸-天冬氨酸改造的M13噬菌体可抑制沙眼衣原体细胞内生长。","authors":"Cong You, Mei Wang, Jiangyi Wang, Tingting Lian, Quanzhong Liu","doi":"10.1016/j.virusres.2025.199645","DOIUrl":null,"url":null,"abstract":"<p><p>Chlamydia trachomatis (C. t) is the most common causative agent of sexually transmitted bacterial urogenital infections worldwide. C. t treatment failure is increasing because antibiotic resistance has developed in recent years. Therefore, the development of novel therapeutic strategies is necessary. Here, we constructed an M13 phage carrying two functional peptides, including the integrin binding peptide arginine-glycine-aspartic acid (RGD) on pⅧ and the IN5 protein from Chlamydia caviae phage φCPG1 on pIII to reduce C. t infection. We called these phages M13-RGD<sub>8</sub>-IN5<sub>3</sub>. The recombinant phages successfully expressed IN5 proteins. Confocal laser scanning microscopy confirmed that the recombinant phages were able to enter HeLa cells and C. t inclusion bodies. IN5 protein was responsible for the observed decrease in C. t infection, while RGD enhanced the permeability of phages into the cells. The M13-RGD<sub>8</sub>-IN5<sub>3</sub> phage was better than the M13-IN5<sub>3</sub> phage in ameliorating C. t infection. qPCR revealed that treatment with the recombinant phages downregulated several C. t genes related to virulence, such as CT_046 (Hc2), CT_443 (OmcB), CT_444 (OmcA), CT_456 (Tarp), CT_666 (Cdsf), CT_694, CT_743 (Hc1), and CT_875 (TepP). The only upregulated gene was CT_119 (IncA). The recombinant phages impacted the C. t mainly in the middle and late stages of the development cycle. Our results suggest that novel recombinant phages are promising as candidates to treat C. t infection.</p>","PeriodicalId":23483,"journal":{"name":"Virus research","volume":" ","pages":"199645"},"PeriodicalIF":2.7000,"publicationDate":"2025-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"M13 phages engineered with chlamydia phage φCPG1 protein IN5 and arginine-glycine-aspartic acid inhibits Chlamydia trachomatis intracellular growth.\",\"authors\":\"Cong You, Mei Wang, Jiangyi Wang, Tingting Lian, Quanzhong Liu\",\"doi\":\"10.1016/j.virusres.2025.199645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chlamydia trachomatis (C. t) is the most common causative agent of sexually transmitted bacterial urogenital infections worldwide. C. t treatment failure is increasing because antibiotic resistance has developed in recent years. Therefore, the development of novel therapeutic strategies is necessary. Here, we constructed an M13 phage carrying two functional peptides, including the integrin binding peptide arginine-glycine-aspartic acid (RGD) on pⅧ and the IN5 protein from Chlamydia caviae phage φCPG1 on pIII to reduce C. t infection. We called these phages M13-RGD<sub>8</sub>-IN5<sub>3</sub>. The recombinant phages successfully expressed IN5 proteins. Confocal laser scanning microscopy confirmed that the recombinant phages were able to enter HeLa cells and C. t inclusion bodies. IN5 protein was responsible for the observed decrease in C. t infection, while RGD enhanced the permeability of phages into the cells. The M13-RGD<sub>8</sub>-IN5<sub>3</sub> phage was better than the M13-IN5<sub>3</sub> phage in ameliorating C. t infection. qPCR revealed that treatment with the recombinant phages downregulated several C. t genes related to virulence, such as CT_046 (Hc2), CT_443 (OmcB), CT_444 (OmcA), CT_456 (Tarp), CT_666 (Cdsf), CT_694, CT_743 (Hc1), and CT_875 (TepP). The only upregulated gene was CT_119 (IncA). The recombinant phages impacted the C. t mainly in the middle and late stages of the development cycle. Our results suggest that novel recombinant phages are promising as candidates to treat C. t infection.</p>\",\"PeriodicalId\":23483,\"journal\":{\"name\":\"Virus research\",\"volume\":\" \",\"pages\":\"199645\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Virus research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.virusres.2025.199645\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virus research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.virusres.2025.199645","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"VIROLOGY","Score":null,"Total":0}
M13 phages engineered with chlamydia phage φCPG1 protein IN5 and arginine-glycine-aspartic acid inhibits Chlamydia trachomatis intracellular growth.
Chlamydia trachomatis (C. t) is the most common causative agent of sexually transmitted bacterial urogenital infections worldwide. C. t treatment failure is increasing because antibiotic resistance has developed in recent years. Therefore, the development of novel therapeutic strategies is necessary. Here, we constructed an M13 phage carrying two functional peptides, including the integrin binding peptide arginine-glycine-aspartic acid (RGD) on pⅧ and the IN5 protein from Chlamydia caviae phage φCPG1 on pIII to reduce C. t infection. We called these phages M13-RGD8-IN53. The recombinant phages successfully expressed IN5 proteins. Confocal laser scanning microscopy confirmed that the recombinant phages were able to enter HeLa cells and C. t inclusion bodies. IN5 protein was responsible for the observed decrease in C. t infection, while RGD enhanced the permeability of phages into the cells. The M13-RGD8-IN53 phage was better than the M13-IN53 phage in ameliorating C. t infection. qPCR revealed that treatment with the recombinant phages downregulated several C. t genes related to virulence, such as CT_046 (Hc2), CT_443 (OmcB), CT_444 (OmcA), CT_456 (Tarp), CT_666 (Cdsf), CT_694, CT_743 (Hc1), and CT_875 (TepP). The only upregulated gene was CT_119 (IncA). The recombinant phages impacted the C. t mainly in the middle and late stages of the development cycle. Our results suggest that novel recombinant phages are promising as candidates to treat C. t infection.
期刊介绍:
Virus Research provides a means of fast publication for original papers on fundamental research in virology. Contributions on new developments concerning virus structure, replication, pathogenesis and evolution are encouraged. These include reports describing virus morphology, the function and antigenic analysis of virus structural components, virus genome structure and expression, analysis on virus replication processes, virus evolution in connection with antiviral interventions, effects of viruses on their host cells, particularly on the immune system, and the pathogenesis of virus infections, including oncogene activation and transduction.