由一小部分后胼胝体纤维维持的半球间完整整合。

IF 9.1 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Tyler Santander, Selin Bekir, Theresa Paul, Jessica M Simonson, Valerie M Wiemer, Henri Etel Skinner, Johanna L Hopf, Anna Rada, Friedrich G Woermann, Thilo Kalbhenn, Barry Giesbrecht, Christian G Bien, Olaf Sporns, Michael S Gazzaniga, Lukas J Volz, Michael B Miller
{"title":"由一小部分后胼胝体纤维维持的半球间完整整合。","authors":"Tyler Santander, Selin Bekir, Theresa Paul, Jessica M Simonson, Valerie M Wiemer, Henri Etel Skinner, Johanna L Hopf, Anna Rada, Friedrich G Woermann, Thilo Kalbhenn, Barry Giesbrecht, Christian G Bien, Olaf Sporns, Michael S Gazzaniga, Lukas J Volz, Michael B Miller","doi":"10.1073/pnas.2520190122","DOIUrl":null,"url":null,"abstract":"<p><p>The dynamic integration of the lateralized and specialized capacities of the two cerebral hemispheres constitutes a hallmark feature of human brain function. This interhemispheric exchange of information critically depends upon the corpus callosum. Classical anatomical descriptions of callosal organization outline a topographic gradient from front to back, such that specific transcallosal fibers support distinct aspects of integrated brain function. Here, we present a challenge to this conventional model. Using neuroimaging data obtained from a new cohort of adult corpus callosotomy patients, we leverage modern network neuroscience techniques to show that full interhemispheric integration can be achieved via a small proportion of posterior callosal fibers. Partial callosotomy patients with spared callosal fibers retained widespread patterns of interhemispheric functional connectivity and showed no signs of behavioral disconnection, even with only 1 cm of the splenium intact. Conversely, only complete callosotomy patients demonstrated sweeping disruptions of interhemispheric network architectures, aligning with disconnection syndromes long-thought to reflect diminished information propagation and communication across the brain. These findings motivate an evolving mechanistic understanding of synchronized interhemispheric neural activity for large-scale human brain function and behavior.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"122 43","pages":"e2520190122"},"PeriodicalIF":9.1000,"publicationDate":"2025-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Full interhemispheric integration sustained by a fraction of posterior callosal fibers.\",\"authors\":\"Tyler Santander, Selin Bekir, Theresa Paul, Jessica M Simonson, Valerie M Wiemer, Henri Etel Skinner, Johanna L Hopf, Anna Rada, Friedrich G Woermann, Thilo Kalbhenn, Barry Giesbrecht, Christian G Bien, Olaf Sporns, Michael S Gazzaniga, Lukas J Volz, Michael B Miller\",\"doi\":\"10.1073/pnas.2520190122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The dynamic integration of the lateralized and specialized capacities of the two cerebral hemispheres constitutes a hallmark feature of human brain function. This interhemispheric exchange of information critically depends upon the corpus callosum. Classical anatomical descriptions of callosal organization outline a topographic gradient from front to back, such that specific transcallosal fibers support distinct aspects of integrated brain function. Here, we present a challenge to this conventional model. Using neuroimaging data obtained from a new cohort of adult corpus callosotomy patients, we leverage modern network neuroscience techniques to show that full interhemispheric integration can be achieved via a small proportion of posterior callosal fibers. Partial callosotomy patients with spared callosal fibers retained widespread patterns of interhemispheric functional connectivity and showed no signs of behavioral disconnection, even with only 1 cm of the splenium intact. Conversely, only complete callosotomy patients demonstrated sweeping disruptions of interhemispheric network architectures, aligning with disconnection syndromes long-thought to reflect diminished information propagation and communication across the brain. These findings motivate an evolving mechanistic understanding of synchronized interhemispheric neural activity for large-scale human brain function and behavior.</p>\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":\"122 43\",\"pages\":\"e2520190122\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2520190122\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/10/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2520190122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/10/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

两个大脑半球的侧化和专门化能力的动态整合构成了人类大脑功能的一个标志性特征。这种半球间的信息交换主要依赖于胼胝体。胼胝体组织的经典解剖学描述概述了从前到后的地形梯度,这样特定的经胼胝体纤维支持综合脑功能的不同方面。在这里,我们对这一传统模式提出了挑战。利用一组新的成年胼胝体切开术患者的神经成像数据,我们利用现代网络神经科学技术表明,通过一小部分后胼胝体纤维可以实现完全的半球间整合。保留胼胝体纤维的部分胼胝体切除术患者保留了广泛的半球间功能连接模式,即使只有1厘米的脾脏完好无损,也没有表现出行为中断的迹象。相反,只有完全胼胝体切开术患者表现出半球间网络结构的全面破坏,这与长期以来被认为反映了大脑中信息传播和交流减少的断开综合征一致。这些发现激发了对大规模人脑功能和行为的同步半球间神经活动的不断发展的机制理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Full interhemispheric integration sustained by a fraction of posterior callosal fibers.

The dynamic integration of the lateralized and specialized capacities of the two cerebral hemispheres constitutes a hallmark feature of human brain function. This interhemispheric exchange of information critically depends upon the corpus callosum. Classical anatomical descriptions of callosal organization outline a topographic gradient from front to back, such that specific transcallosal fibers support distinct aspects of integrated brain function. Here, we present a challenge to this conventional model. Using neuroimaging data obtained from a new cohort of adult corpus callosotomy patients, we leverage modern network neuroscience techniques to show that full interhemispheric integration can be achieved via a small proportion of posterior callosal fibers. Partial callosotomy patients with spared callosal fibers retained widespread patterns of interhemispheric functional connectivity and showed no signs of behavioral disconnection, even with only 1 cm of the splenium intact. Conversely, only complete callosotomy patients demonstrated sweeping disruptions of interhemispheric network architectures, aligning with disconnection syndromes long-thought to reflect diminished information propagation and communication across the brain. These findings motivate an evolving mechanistic understanding of synchronized interhemispheric neural activity for large-scale human brain function and behavior.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信