Gobinath Chithiravelu, Marion J Jones, Ivana Hernandez de Estrada, Yadvendra Singh, Harish Subbaraman, Binata Joddar
{"title":"组织工程用脱细胞海藻支架的研制与优化。","authors":"Gobinath Chithiravelu, Marion J Jones, Ivana Hernandez de Estrada, Yadvendra Singh, Harish Subbaraman, Binata Joddar","doi":"10.1116/6.0004685","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, the marine red seaweed Devaleraea mollis (commonly known as Pacific dulse) was investigated as a green, sustainable, and animal-free tissue scaffold alternative, owing to its extracellular matrix mimicking properties. A decellularization-recellularization approach was employed to develop cellulose-based scaffolds capable of supporting human cardiomyocyte growth. Native dulse samples were cleaned, dried, and decellularized using varying concentrations of sodium dodecyl sulfate (SDS) (3%, 5%, 7%, 10%, 12%, and 15%), with Triton X-100 (2%) and NaClO (0.2%). The resulting scaffolds were comprehensively characterized using light microscopy, scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy, and Raman spectroscopy to identify the conditions that best preserved the fibrous, honeycombed architecture and cellulose-rich content of the native tissue scaffold. Among all treatments, scaffolds processed with 10%, 12%, and 15% SDS exhibited superior structural integrity and biochemical preservation, emerging as the most effective formulations. These selected scaffolds were then subjected to swelling analysis to evaluate biodegradation behavior, followed by in vitro cell culture to assess biocompatibility. All tested scaffolds demonstrated excellent compatibility with human cardiomyocytes, maintaining high cell viability and proliferation for one week of in vitro culture, as confirmed by SEM and immunohistochemistry. Notably, a 90% scaffold surface coverage by cardiac cells on day 6, accompanied by a 2.5 times normalized cell proliferation, indicated robust cell attachment and proliferation. Collectively, these findings highlight seaweed-derived cellulose as a highly promising, biocompatible, and eco-friendly biomaterial, posing itself as a novel interface for diverse biomedical applications and innovations in sustainable tissue engineering.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":"20 5","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and optimization of decellularized seaweed scaffolds for tissue engineering.\",\"authors\":\"Gobinath Chithiravelu, Marion J Jones, Ivana Hernandez de Estrada, Yadvendra Singh, Harish Subbaraman, Binata Joddar\",\"doi\":\"10.1116/6.0004685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, the marine red seaweed Devaleraea mollis (commonly known as Pacific dulse) was investigated as a green, sustainable, and animal-free tissue scaffold alternative, owing to its extracellular matrix mimicking properties. A decellularization-recellularization approach was employed to develop cellulose-based scaffolds capable of supporting human cardiomyocyte growth. Native dulse samples were cleaned, dried, and decellularized using varying concentrations of sodium dodecyl sulfate (SDS) (3%, 5%, 7%, 10%, 12%, and 15%), with Triton X-100 (2%) and NaClO (0.2%). The resulting scaffolds were comprehensively characterized using light microscopy, scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy, and Raman spectroscopy to identify the conditions that best preserved the fibrous, honeycombed architecture and cellulose-rich content of the native tissue scaffold. Among all treatments, scaffolds processed with 10%, 12%, and 15% SDS exhibited superior structural integrity and biochemical preservation, emerging as the most effective formulations. These selected scaffolds were then subjected to swelling analysis to evaluate biodegradation behavior, followed by in vitro cell culture to assess biocompatibility. All tested scaffolds demonstrated excellent compatibility with human cardiomyocytes, maintaining high cell viability and proliferation for one week of in vitro culture, as confirmed by SEM and immunohistochemistry. Notably, a 90% scaffold surface coverage by cardiac cells on day 6, accompanied by a 2.5 times normalized cell proliferation, indicated robust cell attachment and proliferation. Collectively, these findings highlight seaweed-derived cellulose as a highly promising, biocompatible, and eco-friendly biomaterial, posing itself as a novel interface for diverse biomedical applications and innovations in sustainable tissue engineering.</p>\",\"PeriodicalId\":9053,\"journal\":{\"name\":\"Biointerphases\",\"volume\":\"20 5\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biointerphases\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1116/6.0004685\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerphases","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1116/6.0004685","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Development and optimization of decellularized seaweed scaffolds for tissue engineering.
In this study, the marine red seaweed Devaleraea mollis (commonly known as Pacific dulse) was investigated as a green, sustainable, and animal-free tissue scaffold alternative, owing to its extracellular matrix mimicking properties. A decellularization-recellularization approach was employed to develop cellulose-based scaffolds capable of supporting human cardiomyocyte growth. Native dulse samples were cleaned, dried, and decellularized using varying concentrations of sodium dodecyl sulfate (SDS) (3%, 5%, 7%, 10%, 12%, and 15%), with Triton X-100 (2%) and NaClO (0.2%). The resulting scaffolds were comprehensively characterized using light microscopy, scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy, and Raman spectroscopy to identify the conditions that best preserved the fibrous, honeycombed architecture and cellulose-rich content of the native tissue scaffold. Among all treatments, scaffolds processed with 10%, 12%, and 15% SDS exhibited superior structural integrity and biochemical preservation, emerging as the most effective formulations. These selected scaffolds were then subjected to swelling analysis to evaluate biodegradation behavior, followed by in vitro cell culture to assess biocompatibility. All tested scaffolds demonstrated excellent compatibility with human cardiomyocytes, maintaining high cell viability and proliferation for one week of in vitro culture, as confirmed by SEM and immunohistochemistry. Notably, a 90% scaffold surface coverage by cardiac cells on day 6, accompanied by a 2.5 times normalized cell proliferation, indicated robust cell attachment and proliferation. Collectively, these findings highlight seaweed-derived cellulose as a highly promising, biocompatible, and eco-friendly biomaterial, posing itself as a novel interface for diverse biomedical applications and innovations in sustainable tissue engineering.
期刊介绍:
Biointerphases emphasizes quantitative characterization of biomaterials and biological interfaces. As an interdisciplinary journal, a strong foundation of chemistry, physics, biology, engineering, theory, and/or modelling is incorporated into originated articles, reviews, and opinionated essays. In addition to regular submissions, the journal regularly features In Focus sections, targeted on specific topics and edited by experts in the field. Biointerphases is an international journal with excellence in scientific peer-review. Biointerphases is indexed in PubMed and the Science Citation Index (Clarivate Analytics). Accepted papers appear online immediately after proof processing and are uploaded to key citation sources daily. The journal is based on a mixed subscription and open-access model: Typically, authors can publish without any page charges but if the authors wish to publish open access, they can do so for a modest fee.
Topics include:
bio-surface modification
nano-bio interface
protein-surface interactions
cell-surface interactions
in vivo and in vitro systems
biofilms / biofouling
biosensors / biodiagnostics
bio on a chip
coatings
interface spectroscopy
biotribology / biorheology
molecular recognition
ambient diagnostic methods
interface modelling
adhesion phenomena.