氧化还原介质修饰碳毡电极强化微生物电解细胞:电化学和微生物动力学。

IF 3.3 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yuze Jiang, Yakun Lu, Yuchen Zhang, Hongbo Liu, Liansheng Li, Jonathan Wong, Gang Zhou, Suyun Xu
{"title":"氧化还原介质修饰碳毡电极强化微生物电解细胞:电化学和微生物动力学。","authors":"Yuze Jiang, Yakun Lu, Yuchen Zhang, Hongbo Liu, Liansheng Li, Jonathan Wong, Gang Zhou, Suyun Xu","doi":"10.1007/s12010-025-05419-6","DOIUrl":null,"url":null,"abstract":"<p><p>Redox mediators (RMs) have been widely employed in bioelectrochemical systems to enhance electron transfer efficiency. However, systematic comparisons of RM-driven microbial selectivity and its direct correlation with methane production in microbial electrolysis cells (MECs) remain unexplored. This study investigates methane production in MECs using carbon felt (CF) electrodes modified with four RMs, i.e., neutral red (NR), anthraquinone-2,6-disulfonic acid disodium salt (AQDS), humic acid (HA), methyl viologen (MV), and the conductive polymer polyaniline (PANI). Cyclic voltammetry and electrochemical impedance spectroscopy revealed superior electrochemical activity for NR- and HA-modified electrodes (CF-NR, CF-HA) among the tests. CF-NR and CF-PANI demonstrated the highest biocompatibility, supporting 25% and 15% greater biofilm biomass than unmodified CF, respectively. Modified electrodes exhibited lower alpha diversity than CF, indicating enhanced selectivity in microbial enrichment. Overall, CF-HA achieved the highest methane yield (304.1 mL CH<sub>4</sub>/g COD), ~20% higher than the CF control. This study demonstrates that modification-specific microbial enrichment critically governs MEC performance, whereas the quantity of biomass adhesion to the electrode is not the determining factor.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reinforcement of Microbial Electrolytic Cells by Redox Mediators Modified Carbon Felt Electrodes: Electrochemistry and Microbial Dynamics.\",\"authors\":\"Yuze Jiang, Yakun Lu, Yuchen Zhang, Hongbo Liu, Liansheng Li, Jonathan Wong, Gang Zhou, Suyun Xu\",\"doi\":\"10.1007/s12010-025-05419-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Redox mediators (RMs) have been widely employed in bioelectrochemical systems to enhance electron transfer efficiency. However, systematic comparisons of RM-driven microbial selectivity and its direct correlation with methane production in microbial electrolysis cells (MECs) remain unexplored. This study investigates methane production in MECs using carbon felt (CF) electrodes modified with four RMs, i.e., neutral red (NR), anthraquinone-2,6-disulfonic acid disodium salt (AQDS), humic acid (HA), methyl viologen (MV), and the conductive polymer polyaniline (PANI). Cyclic voltammetry and electrochemical impedance spectroscopy revealed superior electrochemical activity for NR- and HA-modified electrodes (CF-NR, CF-HA) among the tests. CF-NR and CF-PANI demonstrated the highest biocompatibility, supporting 25% and 15% greater biofilm biomass than unmodified CF, respectively. Modified electrodes exhibited lower alpha diversity than CF, indicating enhanced selectivity in microbial enrichment. Overall, CF-HA achieved the highest methane yield (304.1 mL CH<sub>4</sub>/g COD), ~20% higher than the CF control. This study demonstrates that modification-specific microbial enrichment critically governs MEC performance, whereas the quantity of biomass adhesion to the electrode is not the determining factor.</p>\",\"PeriodicalId\":465,\"journal\":{\"name\":\"Applied Biochemistry and Biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Biochemistry and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12010-025-05419-6\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12010-025-05419-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

氧化还原介质(RMs)被广泛应用于生物电化学系统中以提高电子传递效率。然而,在微生物电解细胞(MECs)中,rm驱动的微生物选择性及其与甲烷产量的直接关系的系统比较仍未被探索。本研究利用碳毡(CF)电极,分别用中性红(NR)、蒽醌-2,6-二磺酸二钠盐(AQDS)、腐殖酸(HA)、甲基紫素(MV)和导电聚合物聚苯胺(PANI)修饰,研究了MECs中甲烷的产生。循环伏安法和电化学阻抗谱分析表明,NR改性电极和ha改性电极(CF-NR、CF-HA)具有较好的电化学活性。CF- nr和CF- pani表现出最高的生物相容性,支持的生物膜生物量分别比未改性的CF高25%和15%。修饰电极表现出比CF更低的α多样性,表明微生物富集的选择性增强。总体而言,CF- ha的甲烷产率最高(304.1 mL CH4/g COD),比CF对照高出约20%。该研究表明,修饰特异性微生物富集对MEC性能起关键作用,而生物质粘附在电极上的数量并不是决定因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reinforcement of Microbial Electrolytic Cells by Redox Mediators Modified Carbon Felt Electrodes: Electrochemistry and Microbial Dynamics.

Redox mediators (RMs) have been widely employed in bioelectrochemical systems to enhance electron transfer efficiency. However, systematic comparisons of RM-driven microbial selectivity and its direct correlation with methane production in microbial electrolysis cells (MECs) remain unexplored. This study investigates methane production in MECs using carbon felt (CF) electrodes modified with four RMs, i.e., neutral red (NR), anthraquinone-2,6-disulfonic acid disodium salt (AQDS), humic acid (HA), methyl viologen (MV), and the conductive polymer polyaniline (PANI). Cyclic voltammetry and electrochemical impedance spectroscopy revealed superior electrochemical activity for NR- and HA-modified electrodes (CF-NR, CF-HA) among the tests. CF-NR and CF-PANI demonstrated the highest biocompatibility, supporting 25% and 15% greater biofilm biomass than unmodified CF, respectively. Modified electrodes exhibited lower alpha diversity than CF, indicating enhanced selectivity in microbial enrichment. Overall, CF-HA achieved the highest methane yield (304.1 mL CH4/g COD), ~20% higher than the CF control. This study demonstrates that modification-specific microbial enrichment critically governs MEC performance, whereas the quantity of biomass adhesion to the electrode is not the determining factor.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Biochemistry and Biotechnology
Applied Biochemistry and Biotechnology 工程技术-生化与分子生物学
CiteScore
5.70
自引率
6.70%
发文量
460
审稿时长
5.3 months
期刊介绍: This journal is devoted to publishing the highest quality innovative papers in the fields of biochemistry and biotechnology. The typical focus of the journal is to report applications of novel scientific and technological breakthroughs, as well as technological subjects that are still in the proof-of-concept stage. Applied Biochemistry and Biotechnology provides a forum for case studies and practical concepts of biotechnology, utilization, including controls, statistical data analysis, problem descriptions unique to a particular application, and bioprocess economic analyses. The journal publishes reviews deemed of interest to readers, as well as book reviews, meeting and symposia notices, and news items relating to biotechnology in both the industrial and academic communities. In addition, Applied Biochemistry and Biotechnology often publishes lists of patents and publications of special interest to readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信