基于成分建模的胃肠道肿瘤拉曼光谱智能诊断算法。

IF 2.6 3区 化学 Q2 CHEMISTRY, ANALYTICAL
Mingkun Wang, Juan Li, Wenbo Mo, Daojian Qi, Shuang Ni, Feng Tang, Xinming Wang, Chun Qing, Minjie Zhou
{"title":"基于成分建模的胃肠道肿瘤拉曼光谱智能诊断算法。","authors":"Mingkun Wang, Juan Li, Wenbo Mo, Daojian Qi, Shuang Ni, Feng Tang, Xinming Wang, Chun Qing, Minjie Zhou","doi":"10.1039/d5ay01178g","DOIUrl":null,"url":null,"abstract":"<p><p>Early diagnosis of gastrointestinal (GI) cancer is crucial for patient prognosis, yet conventional methods suffer from invasiveness and insufficient molecular sensitivity. While Raman spectroscopy offers non-invasive molecular fingerprinting, spectral overlap in complex biological samples poses a challenge. To address this, this study introduces a diagnostic framework that synergizes Raman spectroscopy with a convolutional neural network (CNN) to quantitatively resolve spectral components for improved GI cancer detection. Based on Raman spectra from 829 GI tissues and five pure components (DNA, triolein, histone, collagen, and actin), an improved CNN regression model was trained on 100 000 simulated spectra. The model accurately quantified the relative proportions of these five biochemicals (<i>R</i><sup>2</sup>: 0.91-0.98), revealing significantly higher coefficients for DNA, collagen, and actin, and lower coefficients for triolein and histone in malignant tissues (<i>P</i> < 0.01). Utilizing these quantitative molecular features, a subsequent LightGBM classification model achieved an accuracy of 97.2%, a sensitivity of 90%, a specificity of 98.1%, and an AUC of 0.973 on an independent test set. This work therefore demonstrates a powerful approach for discriminating benign and malignant GI tissues by quantitatively modeling key molecular alterations. The high classification accuracy validates the clinical translational potential of this non-invasive method for GI cancer screening and offers a generalizable strategy for other complex biological analyses and diagnostics.</p>","PeriodicalId":64,"journal":{"name":"Analytical Methods","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An intelligent diagnostic algorithm for Raman spectroscopy of gastrointestinal cancer based on component modeling.\",\"authors\":\"Mingkun Wang, Juan Li, Wenbo Mo, Daojian Qi, Shuang Ni, Feng Tang, Xinming Wang, Chun Qing, Minjie Zhou\",\"doi\":\"10.1039/d5ay01178g\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Early diagnosis of gastrointestinal (GI) cancer is crucial for patient prognosis, yet conventional methods suffer from invasiveness and insufficient molecular sensitivity. While Raman spectroscopy offers non-invasive molecular fingerprinting, spectral overlap in complex biological samples poses a challenge. To address this, this study introduces a diagnostic framework that synergizes Raman spectroscopy with a convolutional neural network (CNN) to quantitatively resolve spectral components for improved GI cancer detection. Based on Raman spectra from 829 GI tissues and five pure components (DNA, triolein, histone, collagen, and actin), an improved CNN regression model was trained on 100 000 simulated spectra. The model accurately quantified the relative proportions of these five biochemicals (<i>R</i><sup>2</sup>: 0.91-0.98), revealing significantly higher coefficients for DNA, collagen, and actin, and lower coefficients for triolein and histone in malignant tissues (<i>P</i> < 0.01). Utilizing these quantitative molecular features, a subsequent LightGBM classification model achieved an accuracy of 97.2%, a sensitivity of 90%, a specificity of 98.1%, and an AUC of 0.973 on an independent test set. This work therefore demonstrates a powerful approach for discriminating benign and malignant GI tissues by quantitatively modeling key molecular alterations. The high classification accuracy validates the clinical translational potential of this non-invasive method for GI cancer screening and offers a generalizable strategy for other complex biological analyses and diagnostics.</p>\",\"PeriodicalId\":64,\"journal\":{\"name\":\"Analytical Methods\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Methods\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d5ay01178g\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Methods","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5ay01178g","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

胃肠道肿瘤的早期诊断对患者预后至关重要,但传统方法存在侵入性和分子敏感性不足的问题。虽然拉曼光谱提供了非侵入性分子指纹,但复杂生物样品的光谱重叠带来了挑战。为了解决这一问题,本研究引入了一种诊断框架,该框架将拉曼光谱与卷积神经网络(CNN)协同作用,定量解析光谱成分,以改善胃肠道癌症的检测。基于829个GI组织的拉曼光谱和5种纯成分(DNA、三油蛋白、组蛋白、胶原蛋白和肌动蛋白),在10万个模拟光谱上训练改进的CNN回归模型。该模型准确量化了这五种生化物质的相对比例(R2: 0.91-0.98),显示DNA、胶原蛋白和肌动蛋白的系数显著高于恶性组织(P < 0.01),而三油蛋白和组蛋白的系数显著低于恶性组织(P < 0.01)。利用这些定量分子特征,随后建立的LightGBM分类模型在独立测试集上的准确率为97.2%,灵敏度为90%,特异性为98.1%,AUC为0.973。因此,这项工作证明了一种通过定量模拟关键分子改变来区分良性和恶性胃肠道组织的有力方法。高分类准确性验证了这种非侵入性方法在胃肠道癌症筛查中的临床转化潜力,并为其他复杂的生物学分析和诊断提供了一种可推广的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An intelligent diagnostic algorithm for Raman spectroscopy of gastrointestinal cancer based on component modeling.

Early diagnosis of gastrointestinal (GI) cancer is crucial for patient prognosis, yet conventional methods suffer from invasiveness and insufficient molecular sensitivity. While Raman spectroscopy offers non-invasive molecular fingerprinting, spectral overlap in complex biological samples poses a challenge. To address this, this study introduces a diagnostic framework that synergizes Raman spectroscopy with a convolutional neural network (CNN) to quantitatively resolve spectral components for improved GI cancer detection. Based on Raman spectra from 829 GI tissues and five pure components (DNA, triolein, histone, collagen, and actin), an improved CNN regression model was trained on 100 000 simulated spectra. The model accurately quantified the relative proportions of these five biochemicals (R2: 0.91-0.98), revealing significantly higher coefficients for DNA, collagen, and actin, and lower coefficients for triolein and histone in malignant tissues (P < 0.01). Utilizing these quantitative molecular features, a subsequent LightGBM classification model achieved an accuracy of 97.2%, a sensitivity of 90%, a specificity of 98.1%, and an AUC of 0.973 on an independent test set. This work therefore demonstrates a powerful approach for discriminating benign and malignant GI tissues by quantitatively modeling key molecular alterations. The high classification accuracy validates the clinical translational potential of this non-invasive method for GI cancer screening and offers a generalizable strategy for other complex biological analyses and diagnostics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analytical Methods
Analytical Methods CHEMISTRY, ANALYTICAL-FOOD SCIENCE & TECHNOLOGY
CiteScore
5.10
自引率
3.20%
发文量
569
审稿时长
1.8 months
期刊介绍: Early applied demonstrations of new analytical methods with clear societal impact
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信