Sooyeon Woo, Jihwan Yeo, Jinhong Kim, Kyungwoon Lee
{"title":"探索边缘AI智慧城市应用的GPU共享技术","authors":"Sooyeon Woo, Jihwan Yeo, Jinhong Kim, Kyungwoon Lee","doi":"10.4218/etrij.2025-0065","DOIUrl":null,"url":null,"abstract":"<p>The growing adoption of edge AI in smart city applications such as traffic management, surveillance, and environmental monitoring necessitates efficient computational strategies to satisfy the requirements for low latency and high accuracy. This study investigated GPU sharing techniques to improve resource utilization and throughput when running multiple AI applications simultaneously on edge devices. Using the NVIDIA Jetson AGX Orin platform and object detection workloads with the YOLOv8 model, we explored the performance tradeoffs of the threading and multiprocessing approaches. Our findings reveal distinct advantages and limitations. Threading minimizes memory usage by sharing CUDA contexts, whereas multiprocessing achieves higher GPU utilization and shorter inference times by leveraging independent CUDA contexts. However, scalability challenges arise from resource contention and synchronization overheads. This study provides insights into optimizing GPU sharing for edge AI applications, highlighting key tradeoffs and opportunities for enhancing performance in resource-constrained environments.</p>","PeriodicalId":11901,"journal":{"name":"ETRI Journal","volume":"47 5","pages":"855-864"},"PeriodicalIF":1.6000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.4218/etrij.2025-0065","citationCount":"0","resultStr":"{\"title\":\"Exploring GPU sharing techniques for edge AI smart city applications\",\"authors\":\"Sooyeon Woo, Jihwan Yeo, Jinhong Kim, Kyungwoon Lee\",\"doi\":\"10.4218/etrij.2025-0065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The growing adoption of edge AI in smart city applications such as traffic management, surveillance, and environmental monitoring necessitates efficient computational strategies to satisfy the requirements for low latency and high accuracy. This study investigated GPU sharing techniques to improve resource utilization and throughput when running multiple AI applications simultaneously on edge devices. Using the NVIDIA Jetson AGX Orin platform and object detection workloads with the YOLOv8 model, we explored the performance tradeoffs of the threading and multiprocessing approaches. Our findings reveal distinct advantages and limitations. Threading minimizes memory usage by sharing CUDA contexts, whereas multiprocessing achieves higher GPU utilization and shorter inference times by leveraging independent CUDA contexts. However, scalability challenges arise from resource contention and synchronization overheads. This study provides insights into optimizing GPU sharing for edge AI applications, highlighting key tradeoffs and opportunities for enhancing performance in resource-constrained environments.</p>\",\"PeriodicalId\":11901,\"journal\":{\"name\":\"ETRI Journal\",\"volume\":\"47 5\",\"pages\":\"855-864\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.4218/etrij.2025-0065\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ETRI Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.4218/etrij.2025-0065\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETRI Journal","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.4218/etrij.2025-0065","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Exploring GPU sharing techniques for edge AI smart city applications
The growing adoption of edge AI in smart city applications such as traffic management, surveillance, and environmental monitoring necessitates efficient computational strategies to satisfy the requirements for low latency and high accuracy. This study investigated GPU sharing techniques to improve resource utilization and throughput when running multiple AI applications simultaneously on edge devices. Using the NVIDIA Jetson AGX Orin platform and object detection workloads with the YOLOv8 model, we explored the performance tradeoffs of the threading and multiprocessing approaches. Our findings reveal distinct advantages and limitations. Threading minimizes memory usage by sharing CUDA contexts, whereas multiprocessing achieves higher GPU utilization and shorter inference times by leveraging independent CUDA contexts. However, scalability challenges arise from resource contention and synchronization overheads. This study provides insights into optimizing GPU sharing for edge AI applications, highlighting key tradeoffs and opportunities for enhancing performance in resource-constrained environments.
期刊介绍:
ETRI Journal is an international, peer-reviewed multidisciplinary journal published bimonthly in English. The main focus of the journal is to provide an open forum to exchange innovative ideas and technology in the fields of information, telecommunications, and electronics.
Key topics of interest include high-performance computing, big data analytics, cloud computing, multimedia technology, communication networks and services, wireless communications and mobile computing, material and component technology, as well as security.
With an international editorial committee and experts from around the world as reviewers, ETRI Journal publishes high-quality research papers on the latest and best developments from the global community.