{"title":"基于鲁棒Mahalanobis距离的惰性学习方法在高维过程中的故障检测","authors":"Jungwon Yu, Kwang-Ju Kim, In-Su Jang","doi":"10.4218/etrij.2024-0253","DOIUrl":null,"url":null,"abstract":"<p>When using lazy learners based on the Mahalanobis distance (MD) function for process fault detection (FD), due to the curse of dimensionality, type I errors can increase significantly as the number of process variables increases. In high-dimensional data spaces, certain regions exist in which data samples are sparsely distributed. From the perspective of dense regions, the outlierness (i.e., degree of being statistical outliers) of samples in sparse regions increases as the data dimensions increase, leading to unstable estimations of classical covariance matrices for calculating MD function values. To solve this problem, a lazy learning method is proposed based on a robust MD function, where robust covariance matrices are estimated using a minimum covariance determinant method. Here, <i>k</i>-nearest neighbors and local outlier factor are employed as baseline learners. The proposed method can be applied to all types of lazy learning techniques. To verify FD performance, the proposed method is applied to two benchmark processes. The experimental results show that the proposed method can perform FD on very high-dimensional processes successfully without rapid increases in type I errors.</p>","PeriodicalId":11901,"journal":{"name":"ETRI Journal","volume":"47 5","pages":"865-880"},"PeriodicalIF":1.6000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.4218/etrij.2024-0253","citationCount":"0","resultStr":"{\"title\":\"Robust Mahalanobis distance-based lazy learning method for fault detection in high-dimensional processes\",\"authors\":\"Jungwon Yu, Kwang-Ju Kim, In-Su Jang\",\"doi\":\"10.4218/etrij.2024-0253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>When using lazy learners based on the Mahalanobis distance (MD) function for process fault detection (FD), due to the curse of dimensionality, type I errors can increase significantly as the number of process variables increases. In high-dimensional data spaces, certain regions exist in which data samples are sparsely distributed. From the perspective of dense regions, the outlierness (i.e., degree of being statistical outliers) of samples in sparse regions increases as the data dimensions increase, leading to unstable estimations of classical covariance matrices for calculating MD function values. To solve this problem, a lazy learning method is proposed based on a robust MD function, where robust covariance matrices are estimated using a minimum covariance determinant method. Here, <i>k</i>-nearest neighbors and local outlier factor are employed as baseline learners. The proposed method can be applied to all types of lazy learning techniques. To verify FD performance, the proposed method is applied to two benchmark processes. The experimental results show that the proposed method can perform FD on very high-dimensional processes successfully without rapid increases in type I errors.</p>\",\"PeriodicalId\":11901,\"journal\":{\"name\":\"ETRI Journal\",\"volume\":\"47 5\",\"pages\":\"865-880\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.4218/etrij.2024-0253\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ETRI Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.4218/etrij.2024-0253\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETRI Journal","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.4218/etrij.2024-0253","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Robust Mahalanobis distance-based lazy learning method for fault detection in high-dimensional processes
When using lazy learners based on the Mahalanobis distance (MD) function for process fault detection (FD), due to the curse of dimensionality, type I errors can increase significantly as the number of process variables increases. In high-dimensional data spaces, certain regions exist in which data samples are sparsely distributed. From the perspective of dense regions, the outlierness (i.e., degree of being statistical outliers) of samples in sparse regions increases as the data dimensions increase, leading to unstable estimations of classical covariance matrices for calculating MD function values. To solve this problem, a lazy learning method is proposed based on a robust MD function, where robust covariance matrices are estimated using a minimum covariance determinant method. Here, k-nearest neighbors and local outlier factor are employed as baseline learners. The proposed method can be applied to all types of lazy learning techniques. To verify FD performance, the proposed method is applied to two benchmark processes. The experimental results show that the proposed method can perform FD on very high-dimensional processes successfully without rapid increases in type I errors.
期刊介绍:
ETRI Journal is an international, peer-reviewed multidisciplinary journal published bimonthly in English. The main focus of the journal is to provide an open forum to exchange innovative ideas and technology in the fields of information, telecommunications, and electronics.
Key topics of interest include high-performance computing, big data analytics, cloud computing, multimedia technology, communication networks and services, wireless communications and mobile computing, material and component technology, as well as security.
With an international editorial committee and experts from around the world as reviewers, ETRI Journal publishes high-quality research papers on the latest and best developments from the global community.