Mohamed Issifi Yacouba, Andreas Lambertz, Yanxin Liu, Henrike Gattermann, Volker Lauterbach, Karsten Bittkau, Uwe Rau, Kaining Ding
{"title":"利用无银金属化技术实现硅异质结太阳能电池的高效率","authors":"Mohamed Issifi Yacouba, Andreas Lambertz, Yanxin Liu, Henrike Gattermann, Volker Lauterbach, Karsten Bittkau, Uwe Rau, Kaining Ding","doi":"10.1002/pip.70016","DOIUrl":null,"url":null,"abstract":"<p>This work investigates the influence of the metallization of low-temperature Cu paste and AgCu paste on the performance of SHJ solar cells through a comprehensive study of two techniques—screen printing (SP) and dispensing. The research successfully applied Cu and AgCu pastes as metal contacts on SHJ solar cells, yielding promising results. Notably, cells with AgCu paste SP on the front side and Ag paste SP on the rear side achieved a 0.13% efficiency gain over reference Ag SP bifacial cells. Moreover, cells with AgCu paste SP on the front side and Cu paste SP on the rear side reached an efficiency of 23.6%, just 0.35% lower than the reference cells, while saving approximately 70% of Ag paste. Cells with Cu paste SP on both sides recorded an average efficiency of 22.4% and a maximum of 23.08%, the highest efficiency reported for cells using Cu SP on both sides (zero Ag). Cells with Cu dispensing on the rear side also demonstrated superior performance compared to cells with Cu SP on the rear side. Along, we assessed the finger-printed characteristics of the three pastes and the performance of SHJ solar cells under various annealing conditions including the Cu annealing conditions (300°C for 5 s). The solar cells maintained stable performance up to 280°C for 5 s, with degradation observed above this temperature, and light soaking partially recovered some of the efficiency loss. A 0.2% drop persisted under Cu annealing conditions, but light soaking reversed this effect back to the original efficiency. This work advances SHJ solar cell technology by highlighting the potential of AgCu and Cu pastes to efficiently replace or reduce Ag paste consumption in SHJ solar cell metallization.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"33 11","pages":"1223-1235"},"PeriodicalIF":7.6000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.70016","citationCount":"0","resultStr":"{\"title\":\"Achieving High Efficiencies for Silicon Heterojunction Solar Cells Using Silver-Free Metallization\",\"authors\":\"Mohamed Issifi Yacouba, Andreas Lambertz, Yanxin Liu, Henrike Gattermann, Volker Lauterbach, Karsten Bittkau, Uwe Rau, Kaining Ding\",\"doi\":\"10.1002/pip.70016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This work investigates the influence of the metallization of low-temperature Cu paste and AgCu paste on the performance of SHJ solar cells through a comprehensive study of two techniques—screen printing (SP) and dispensing. The research successfully applied Cu and AgCu pastes as metal contacts on SHJ solar cells, yielding promising results. Notably, cells with AgCu paste SP on the front side and Ag paste SP on the rear side achieved a 0.13% efficiency gain over reference Ag SP bifacial cells. Moreover, cells with AgCu paste SP on the front side and Cu paste SP on the rear side reached an efficiency of 23.6%, just 0.35% lower than the reference cells, while saving approximately 70% of Ag paste. Cells with Cu paste SP on both sides recorded an average efficiency of 22.4% and a maximum of 23.08%, the highest efficiency reported for cells using Cu SP on both sides (zero Ag). Cells with Cu dispensing on the rear side also demonstrated superior performance compared to cells with Cu SP on the rear side. Along, we assessed the finger-printed characteristics of the three pastes and the performance of SHJ solar cells under various annealing conditions including the Cu annealing conditions (300°C for 5 s). The solar cells maintained stable performance up to 280°C for 5 s, with degradation observed above this temperature, and light soaking partially recovered some of the efficiency loss. A 0.2% drop persisted under Cu annealing conditions, but light soaking reversed this effect back to the original efficiency. This work advances SHJ solar cell technology by highlighting the potential of AgCu and Cu pastes to efficiently replace or reduce Ag paste consumption in SHJ solar cell metallization.</p>\",\"PeriodicalId\":223,\"journal\":{\"name\":\"Progress in Photovoltaics\",\"volume\":\"33 11\",\"pages\":\"1223-1235\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.70016\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Photovoltaics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/pip.70016\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Photovoltaics","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pip.70016","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Achieving High Efficiencies for Silicon Heterojunction Solar Cells Using Silver-Free Metallization
This work investigates the influence of the metallization of low-temperature Cu paste and AgCu paste on the performance of SHJ solar cells through a comprehensive study of two techniques—screen printing (SP) and dispensing. The research successfully applied Cu and AgCu pastes as metal contacts on SHJ solar cells, yielding promising results. Notably, cells with AgCu paste SP on the front side and Ag paste SP on the rear side achieved a 0.13% efficiency gain over reference Ag SP bifacial cells. Moreover, cells with AgCu paste SP on the front side and Cu paste SP on the rear side reached an efficiency of 23.6%, just 0.35% lower than the reference cells, while saving approximately 70% of Ag paste. Cells with Cu paste SP on both sides recorded an average efficiency of 22.4% and a maximum of 23.08%, the highest efficiency reported for cells using Cu SP on both sides (zero Ag). Cells with Cu dispensing on the rear side also demonstrated superior performance compared to cells with Cu SP on the rear side. Along, we assessed the finger-printed characteristics of the three pastes and the performance of SHJ solar cells under various annealing conditions including the Cu annealing conditions (300°C for 5 s). The solar cells maintained stable performance up to 280°C for 5 s, with degradation observed above this temperature, and light soaking partially recovered some of the efficiency loss. A 0.2% drop persisted under Cu annealing conditions, but light soaking reversed this effect back to the original efficiency. This work advances SHJ solar cell technology by highlighting the potential of AgCu and Cu pastes to efficiently replace or reduce Ag paste consumption in SHJ solar cell metallization.
期刊介绍:
Progress in Photovoltaics offers a prestigious forum for reporting advances in this rapidly developing technology, aiming to reach all interested professionals, researchers and energy policy-makers.
The key criterion is that all papers submitted should report substantial “progress” in photovoltaics.
Papers are encouraged that report substantial “progress” such as gains in independently certified solar cell efficiency, eligible for a new entry in the journal''s widely referenced Solar Cell Efficiency Tables.
Examples of papers that will not be considered for publication are those that report development in materials without relation to data on cell performance, routine analysis, characterisation or modelling of cells or processing sequences, routine reports of system performance, improvements in electronic hardware design, or country programs, although invited papers may occasionally be solicited in these areas to capture accumulated “progress”.