{"title":"基于路径积分的约束采样MPC无碰撞机器人操作","authors":"Xingfang Wang;Hui Li;Dong Wang;Xiao Huang;Zhihong Jiang","doi":"10.1109/TSMC.2025.3611922","DOIUrl":null,"url":null,"abstract":"The dynamic and unknown human behaviors in human–robot interaction make it challenging for collision-free robot manipulation. Although sampling-based model predictive control (MPC) has achieved real-time control in the above scenarios, it is hard to handle equality hard constraints, such as working along a specified trajectory, due to sampling disturbances. To improve manipulation performance under multiple constraints, this article presents a novel constrained sampling-based MPC (CSMPC) method using path integral. First, hierarchical optimization combining policy sampling projection and the Lagrange multiplier method is used to handle equality hard constraints for high-precision manipulation tasks. Second, collision avoidance and smooth motion are modeled as inequality soft constraints, where collision detection and time series prediction are used to ensure the safety and smoothness of dynamic interaction. Finally, an adaptive noise method is built to improve the stability of physical robot manipulation. The simulation and experiment results demonstrate that the proposed method enables a 7-DOF robot manipulator to achieve precise manipulation while avoiding dynamic obstacles.","PeriodicalId":48915,"journal":{"name":"IEEE Transactions on Systems Man Cybernetics-Systems","volume":"55 11","pages":"8701-8714"},"PeriodicalIF":8.7000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constrained Sampling-Based MPC Using Path Integral for Collision-Free Robot Manipulation\",\"authors\":\"Xingfang Wang;Hui Li;Dong Wang;Xiao Huang;Zhihong Jiang\",\"doi\":\"10.1109/TSMC.2025.3611922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dynamic and unknown human behaviors in human–robot interaction make it challenging for collision-free robot manipulation. Although sampling-based model predictive control (MPC) has achieved real-time control in the above scenarios, it is hard to handle equality hard constraints, such as working along a specified trajectory, due to sampling disturbances. To improve manipulation performance under multiple constraints, this article presents a novel constrained sampling-based MPC (CSMPC) method using path integral. First, hierarchical optimization combining policy sampling projection and the Lagrange multiplier method is used to handle equality hard constraints for high-precision manipulation tasks. Second, collision avoidance and smooth motion are modeled as inequality soft constraints, where collision detection and time series prediction are used to ensure the safety and smoothness of dynamic interaction. Finally, an adaptive noise method is built to improve the stability of physical robot manipulation. The simulation and experiment results demonstrate that the proposed method enables a 7-DOF robot manipulator to achieve precise manipulation while avoiding dynamic obstacles.\",\"PeriodicalId\":48915,\"journal\":{\"name\":\"IEEE Transactions on Systems Man Cybernetics-Systems\",\"volume\":\"55 11\",\"pages\":\"8701-8714\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Systems Man Cybernetics-Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11180924/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man Cybernetics-Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11180924/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Constrained Sampling-Based MPC Using Path Integral for Collision-Free Robot Manipulation
The dynamic and unknown human behaviors in human–robot interaction make it challenging for collision-free robot manipulation. Although sampling-based model predictive control (MPC) has achieved real-time control in the above scenarios, it is hard to handle equality hard constraints, such as working along a specified trajectory, due to sampling disturbances. To improve manipulation performance under multiple constraints, this article presents a novel constrained sampling-based MPC (CSMPC) method using path integral. First, hierarchical optimization combining policy sampling projection and the Lagrange multiplier method is used to handle equality hard constraints for high-precision manipulation tasks. Second, collision avoidance and smooth motion are modeled as inequality soft constraints, where collision detection and time series prediction are used to ensure the safety and smoothness of dynamic interaction. Finally, an adaptive noise method is built to improve the stability of physical robot manipulation. The simulation and experiment results demonstrate that the proposed method enables a 7-DOF robot manipulator to achieve precise manipulation while avoiding dynamic obstacles.
期刊介绍:
The IEEE Transactions on Systems, Man, and Cybernetics: Systems encompasses the fields of systems engineering, covering issue formulation, analysis, and modeling throughout the systems engineering lifecycle phases. It addresses decision-making, issue interpretation, systems management, processes, and various methods such as optimization, modeling, and simulation in the development and deployment of large systems.