{"title":"面向封闭曲面上素数阶有限极大群作用集的组合密度","authors":"Grzegorz Gromadzki, Jakub Szmelter-Tomczuk","doi":"10.1016/j.jalgebra.2025.09.015","DOIUrl":null,"url":null,"abstract":"<div><div>Suppose <span><math><mi>X</mi><mo>=</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span> is a compact orientable surface of genus <span><math><mi>g</mi><mo>≥</mo><mn>2</mn></math></span>. A cyclic group <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> of prime order <em>p</em> of orientation-preserving homeomorphisms of <em>X</em> is called finitely maximal if there is no proper finite supergroup <span><math><mi>G</mi><mo>≤</mo><msup><mrow><mi>Homeo</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>(</mo><mi>X</mi><mo>)</mo></math></span> containing <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>. Peterson et al. (2017) <span><span>[8]</span></span> showed that if <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> is finitely maximal then the number <em>r</em> of fixed points of <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> is maximal, or equivalently the genus <em>h</em> of <span><math><mi>X</mi><mo>/</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> is minimal. Moreover, they exhibited an infinite sequence of genera within which any given action of <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> on <em>X</em> implies <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> is contained in some finite supergroup and demonstrate for genera outside of this sequence the existence of at least one finitely maximal <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-action. Here we show that the set of equivalence classes of finitely maximal cyclic actions of a fixed Teichmüller dimension <em>d</em> defined as <span><math><mn>3</mn><mo>(</mo><mi>h</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>+</mo><mi>r</mi></math></span> is combinatorially dense, in a suitable sense, in the set of classes of all actions of prime order of such dimension. This is a bit of a surprising result in the context of the results of Peterson, Russell and Wootton and it has some consequences concerning the singular locus of the moduli space of algebraic curves of a given genus, which we briefly describe at the end of the Introduction.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"688 ","pages":"Pages 77-90"},"PeriodicalIF":0.8000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combinatorial density of the set of finitely maximal group actions of prime order on closed oriented surfaces\",\"authors\":\"Grzegorz Gromadzki, Jakub Szmelter-Tomczuk\",\"doi\":\"10.1016/j.jalgebra.2025.09.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Suppose <span><math><mi>X</mi><mo>=</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span> is a compact orientable surface of genus <span><math><mi>g</mi><mo>≥</mo><mn>2</mn></math></span>. A cyclic group <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> of prime order <em>p</em> of orientation-preserving homeomorphisms of <em>X</em> is called finitely maximal if there is no proper finite supergroup <span><math><mi>G</mi><mo>≤</mo><msup><mrow><mi>Homeo</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>(</mo><mi>X</mi><mo>)</mo></math></span> containing <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>. Peterson et al. (2017) <span><span>[8]</span></span> showed that if <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> is finitely maximal then the number <em>r</em> of fixed points of <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> is maximal, or equivalently the genus <em>h</em> of <span><math><mi>X</mi><mo>/</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> is minimal. Moreover, they exhibited an infinite sequence of genera within which any given action of <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> on <em>X</em> implies <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> is contained in some finite supergroup and demonstrate for genera outside of this sequence the existence of at least one finitely maximal <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-action. Here we show that the set of equivalence classes of finitely maximal cyclic actions of a fixed Teichmüller dimension <em>d</em> defined as <span><math><mn>3</mn><mo>(</mo><mi>h</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>+</mo><mi>r</mi></math></span> is combinatorially dense, in a suitable sense, in the set of classes of all actions of prime order of such dimension. This is a bit of a surprising result in the context of the results of Peterson, Russell and Wootton and it has some consequences concerning the singular locus of the moduli space of algebraic curves of a given genus, which we briefly describe at the end of the Introduction.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"688 \",\"pages\":\"Pages 77-90\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325005496\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325005496","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设X=Xg是g≥2的紧致可定向曲面。如果不存在含有X的保向同胚的素阶循环群Zp,则称其为有限极大群。Peterson et al.(2017)[8]表明,如果Zp是有限极大的,那么Zp的不动点的个数r是极大的,或者等价地说,X/Zp的h属是最小的。此外,他们还展示了一个无限属序列,其中Zp对X的任何给定作用都意味着Zp包含在某个有限超群中,并证明了在该序列之外的属至少存在一个有限极大的Zp作用。本文证明了具有固定teichm维数d的有限极大循环作用的等价类集合定义为3(h−1)+r,在适当意义上,在该维数的所有素数阶作用的类集合中是组合密集的。在Peterson, Russell和Wootton的结果的背景下,这是一个有点令人惊讶的结果,它对给定属的代数曲线的模空间的奇异轨迹有一些影响,我们在引言的最后简要地描述了这一点。
Combinatorial density of the set of finitely maximal group actions of prime order on closed oriented surfaces
Suppose is a compact orientable surface of genus . A cyclic group of prime order p of orientation-preserving homeomorphisms of X is called finitely maximal if there is no proper finite supergroup containing . Peterson et al. (2017) [8] showed that if is finitely maximal then the number r of fixed points of is maximal, or equivalently the genus h of is minimal. Moreover, they exhibited an infinite sequence of genera within which any given action of on X implies is contained in some finite supergroup and demonstrate for genera outside of this sequence the existence of at least one finitely maximal -action. Here we show that the set of equivalence classes of finitely maximal cyclic actions of a fixed Teichmüller dimension d defined as is combinatorially dense, in a suitable sense, in the set of classes of all actions of prime order of such dimension. This is a bit of a surprising result in the context of the results of Peterson, Russell and Wootton and it has some consequences concerning the singular locus of the moduli space of algebraic curves of a given genus, which we briefly describe at the end of the Introduction.
期刊介绍:
The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.