{"title":"交叉正线性映射,正多项式和平方和","authors":"Igor Klep , Klemen Šivic , Aljaž Zalar","doi":"10.1016/j.jalgebra.2025.09.018","DOIUrl":null,"url":null,"abstract":"<div><div>A ⁎-linear map Φ between matrix spaces is cross-positive if it is positive on orthogonal pairs <span><math><mo>(</mo><mi>U</mi><mo>,</mo><mi>V</mi><mo>)</mo></math></span> of positive semidefinite matrices in the sense that <span><math><mo>〈</mo><mi>U</mi><mo>,</mo><mi>V</mi><mo>〉</mo><mo>:</mo><mo>=</mo><mi>tr</mi><mo>(</mo><mi>U</mi><mi>V</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span> implies <span><math><mo>〈</mo><mi>Φ</mi><mo>(</mo><mi>U</mi><mo>)</mo><mo>,</mo><mi>V</mi><mo>〉</mo><mo>≥</mo><mn>0</mn></math></span>, and is completely cross-positive if all its ampliations <span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>⊗</mo><mi>Φ</mi></math></span> are cross-positive. (Completely) cross-positive maps arise in the theory of operator semigroups, where they are sometimes called exponentially-positive maps, and are also important in the theory of affine processes on symmetric cones in mathematical finance.</div><div>To each Φ as above a bihomogeneous form is associated by <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>Φ</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>y</mi></mrow><mrow><mi>T</mi></mrow></msup><mi>Φ</mi><mo>(</mo><mi>x</mi><msup><mrow><mi>x</mi></mrow><mrow><mi>T</mi></mrow></msup><mo>)</mo><mi>y</mi></math></span>. Then Φ is cross-positive if and only if <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>Φ</mi></mrow></msub></math></span> is nonnegative on the variety of pairs of orthogonal vectors <span><math><mo>{</mo><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>|</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>T</mi></mrow></msup><mi>y</mi><mo>=</mo><mn>0</mn><mo>}</mo></math></span>. Moreover, Φ is shown to be completely cross-positive if and only if <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>Φ</mi></mrow></msub></math></span> is a sum of squares modulo the principal ideal <span><math><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>T</mi></mrow></msup><mi>y</mi><mo>)</mo></math></span>. These observations bring the study of cross-positive maps into the powerful setting of real algebraic geometry. Here this interplay is exploited to prove quantitative bounds on the fraction of cross-positive maps that are completely cross-positive. Detailed results about cross-positive maps Φ mapping between <span><math><mn>3</mn><mo>×</mo><mn>3</mn></math></span> matrices are given. Finally, an algorithm to produce cross-positive maps that are not completely cross-positive is presented.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"688 ","pages":"Pages 189-243"},"PeriodicalIF":0.8000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cross-positive linear maps, positive polynomials and sums of squares\",\"authors\":\"Igor Klep , Klemen Šivic , Aljaž Zalar\",\"doi\":\"10.1016/j.jalgebra.2025.09.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A ⁎-linear map Φ between matrix spaces is cross-positive if it is positive on orthogonal pairs <span><math><mo>(</mo><mi>U</mi><mo>,</mo><mi>V</mi><mo>)</mo></math></span> of positive semidefinite matrices in the sense that <span><math><mo>〈</mo><mi>U</mi><mo>,</mo><mi>V</mi><mo>〉</mo><mo>:</mo><mo>=</mo><mi>tr</mi><mo>(</mo><mi>U</mi><mi>V</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span> implies <span><math><mo>〈</mo><mi>Φ</mi><mo>(</mo><mi>U</mi><mo>)</mo><mo>,</mo><mi>V</mi><mo>〉</mo><mo>≥</mo><mn>0</mn></math></span>, and is completely cross-positive if all its ampliations <span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>⊗</mo><mi>Φ</mi></math></span> are cross-positive. (Completely) cross-positive maps arise in the theory of operator semigroups, where they are sometimes called exponentially-positive maps, and are also important in the theory of affine processes on symmetric cones in mathematical finance.</div><div>To each Φ as above a bihomogeneous form is associated by <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>Φ</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>y</mi></mrow><mrow><mi>T</mi></mrow></msup><mi>Φ</mi><mo>(</mo><mi>x</mi><msup><mrow><mi>x</mi></mrow><mrow><mi>T</mi></mrow></msup><mo>)</mo><mi>y</mi></math></span>. Then Φ is cross-positive if and only if <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>Φ</mi></mrow></msub></math></span> is nonnegative on the variety of pairs of orthogonal vectors <span><math><mo>{</mo><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>|</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>T</mi></mrow></msup><mi>y</mi><mo>=</mo><mn>0</mn><mo>}</mo></math></span>. Moreover, Φ is shown to be completely cross-positive if and only if <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>Φ</mi></mrow></msub></math></span> is a sum of squares modulo the principal ideal <span><math><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>T</mi></mrow></msup><mi>y</mi><mo>)</mo></math></span>. These observations bring the study of cross-positive maps into the powerful setting of real algebraic geometry. Here this interplay is exploited to prove quantitative bounds on the fraction of cross-positive maps that are completely cross-positive. Detailed results about cross-positive maps Φ mapping between <span><math><mn>3</mn><mo>×</mo><mn>3</mn></math></span> matrices are given. Finally, an algorithm to produce cross-positive maps that are not completely cross-positive is presented.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"688 \",\"pages\":\"Pages 189-243\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325005526\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325005526","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Cross-positive linear maps, positive polynomials and sums of squares
A ⁎-linear map Φ between matrix spaces is cross-positive if it is positive on orthogonal pairs of positive semidefinite matrices in the sense that implies , and is completely cross-positive if all its ampliations are cross-positive. (Completely) cross-positive maps arise in the theory of operator semigroups, where they are sometimes called exponentially-positive maps, and are also important in the theory of affine processes on symmetric cones in mathematical finance.
To each Φ as above a bihomogeneous form is associated by . Then Φ is cross-positive if and only if is nonnegative on the variety of pairs of orthogonal vectors . Moreover, Φ is shown to be completely cross-positive if and only if is a sum of squares modulo the principal ideal . These observations bring the study of cross-positive maps into the powerful setting of real algebraic geometry. Here this interplay is exploited to prove quantitative bounds on the fraction of cross-positive maps that are completely cross-positive. Detailed results about cross-positive maps Φ mapping between matrices are given. Finally, an algorithm to produce cross-positive maps that are not completely cross-positive is presented.
期刊介绍:
The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.