任意剩余有限性与共轭可分性增长

IF 0.8 2区 数学 Q2 MATHEMATICS
Lukas Vandeputte
{"title":"任意剩余有限性与共轭可分性增长","authors":"Lukas Vandeputte","doi":"10.1016/j.jalgebra.2025.09.025","DOIUrl":null,"url":null,"abstract":"<div><div>In a recent paper, Henry Bradford showed that all sufficiently fast growing functions appear as the residual finiteness growth function of some group. In this paper we show that the groups there constructed are conjugacy separable and that their conjugacy separability growth is equal to the residual finiteness growth. It follows that all sufficiently fast growing functions appear as the conjugacy separability growth function of some group. We extend this construction to a new class of groups such that given functions <span><math><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> under the same constraints and satisfying <span><math><msub><mrow><mi>f</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>≥</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, we can find a group such that the residual finiteness growth is given by <span><math><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and the conjugacy separability growth by <span><math><msub><mrow><mi>f</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, showing that the residual finiteness growth and conjugacy separability growth behave independently and can lie arbitrarily far apart.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"688 ","pages":"Pages 91-115"},"PeriodicalIF":0.8000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Arbitrary residual finiteness and conjugacy separability growth\",\"authors\":\"Lukas Vandeputte\",\"doi\":\"10.1016/j.jalgebra.2025.09.025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In a recent paper, Henry Bradford showed that all sufficiently fast growing functions appear as the residual finiteness growth function of some group. In this paper we show that the groups there constructed are conjugacy separable and that their conjugacy separability growth is equal to the residual finiteness growth. It follows that all sufficiently fast growing functions appear as the conjugacy separability growth function of some group. We extend this construction to a new class of groups such that given functions <span><math><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> under the same constraints and satisfying <span><math><msub><mrow><mi>f</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>≥</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, we can find a group such that the residual finiteness growth is given by <span><math><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and the conjugacy separability growth by <span><math><msub><mrow><mi>f</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, showing that the residual finiteness growth and conjugacy separability growth behave independently and can lie arbitrarily far apart.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"688 \",\"pages\":\"Pages 91-115\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325005629\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325005629","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在最近的一篇论文中,Henry Bradford证明了所有足够快的增长函数都表现为某群的剩余有限增长函数。本文证明了在此构造的群是共轭可分的,并且它们的共轭可分性增长等于剩余有限增长。由此得出,所有足够快的增长函数都表现为某群的共轭可分性增长函数。我们将这一构造推广到一类新的群,使得给定函数f1,f2在相同的约束条件下,满足f2≥f1,我们可以找到一个群,使得剩余有限性增长由f1给出,共轭可分性增长由f2给出,表明剩余有限性增长和共轭可分性增长是独立的,并且可以间隔任意远。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Arbitrary residual finiteness and conjugacy separability growth
In a recent paper, Henry Bradford showed that all sufficiently fast growing functions appear as the residual finiteness growth function of some group. In this paper we show that the groups there constructed are conjugacy separable and that their conjugacy separability growth is equal to the residual finiteness growth. It follows that all sufficiently fast growing functions appear as the conjugacy separability growth function of some group. We extend this construction to a new class of groups such that given functions f1,f2 under the same constraints and satisfying f2f1, we can find a group such that the residual finiteness growth is given by f1 and the conjugacy separability growth by f2, showing that the residual finiteness growth and conjugacy separability growth behave independently and can lie arbitrarily far apart.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信