Niklas S. Neher , Erik Faulhaber , Sven Berger , Christian Weißenfels , Gregor J. Gassner , Michael Schlottke-Lakemper
{"title":"鲁棒和有效的预处理技术,基于粒子的方法,包括动态边界生成","authors":"Niklas S. Neher , Erik Faulhaber , Sven Berger , Christian Weißenfels , Gregor J. Gassner , Michael Schlottke-Lakemper","doi":"10.1016/j.cpc.2025.109898","DOIUrl":null,"url":null,"abstract":"<div><div>Obtaining high-quality particle distributions for stable and accurate particle-based simulations poses significant challenges, especially for complex geometries. We introduce a preprocessing technique for 2D and 3D geometries, optimized for smoothed particle hydrodynamics (SPH) and other particle-based methods. Our pipeline begins with the generation of a resolution-adaptive point cloud near the geometry's surface employing a face-based neighborhood search. This point cloud forms the basis for a signed distance field, enabling efficient, localized computations near surface regions. To create an initial particle configuration, we apply a hierarchical winding number method for fast and accurate inside-outside segmentation. Particle positions are then relaxed using an SPH-inspired scheme, which also serves to pack boundary particles. This ensures full kernel support and promotes isotropic distributions while preserving the geometry interface. By leveraging the meshless nature of particle-based methods, our approach does not require connectivity information and is thus straightforward to integrate into existing particle-based frameworks. It is robust to imperfect input geometries and memory-efficient without compromising performance. Moreover, our experiments demonstrate that with increasingly higher resolution, the resulting particle distribution converges to the exact geometry.</div></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"318 ","pages":"Article 109898"},"PeriodicalIF":3.4000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust and efficient pre-processing techniques for particle-based methods including dynamic boundary generation\",\"authors\":\"Niklas S. Neher , Erik Faulhaber , Sven Berger , Christian Weißenfels , Gregor J. Gassner , Michael Schlottke-Lakemper\",\"doi\":\"10.1016/j.cpc.2025.109898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Obtaining high-quality particle distributions for stable and accurate particle-based simulations poses significant challenges, especially for complex geometries. We introduce a preprocessing technique for 2D and 3D geometries, optimized for smoothed particle hydrodynamics (SPH) and other particle-based methods. Our pipeline begins with the generation of a resolution-adaptive point cloud near the geometry's surface employing a face-based neighborhood search. This point cloud forms the basis for a signed distance field, enabling efficient, localized computations near surface regions. To create an initial particle configuration, we apply a hierarchical winding number method for fast and accurate inside-outside segmentation. Particle positions are then relaxed using an SPH-inspired scheme, which also serves to pack boundary particles. This ensures full kernel support and promotes isotropic distributions while preserving the geometry interface. By leveraging the meshless nature of particle-based methods, our approach does not require connectivity information and is thus straightforward to integrate into existing particle-based frameworks. It is robust to imperfect input geometries and memory-efficient without compromising performance. Moreover, our experiments demonstrate that with increasingly higher resolution, the resulting particle distribution converges to the exact geometry.</div></div>\",\"PeriodicalId\":285,\"journal\":{\"name\":\"Computer Physics Communications\",\"volume\":\"318 \",\"pages\":\"Article 109898\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Physics Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010465525003996\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465525003996","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Robust and efficient pre-processing techniques for particle-based methods including dynamic boundary generation
Obtaining high-quality particle distributions for stable and accurate particle-based simulations poses significant challenges, especially for complex geometries. We introduce a preprocessing technique for 2D and 3D geometries, optimized for smoothed particle hydrodynamics (SPH) and other particle-based methods. Our pipeline begins with the generation of a resolution-adaptive point cloud near the geometry's surface employing a face-based neighborhood search. This point cloud forms the basis for a signed distance field, enabling efficient, localized computations near surface regions. To create an initial particle configuration, we apply a hierarchical winding number method for fast and accurate inside-outside segmentation. Particle positions are then relaxed using an SPH-inspired scheme, which also serves to pack boundary particles. This ensures full kernel support and promotes isotropic distributions while preserving the geometry interface. By leveraging the meshless nature of particle-based methods, our approach does not require connectivity information and is thus straightforward to integrate into existing particle-based frameworks. It is robust to imperfect input geometries and memory-efficient without compromising performance. Moreover, our experiments demonstrate that with increasingly higher resolution, the resulting particle distribution converges to the exact geometry.
期刊介绍:
The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper.
Computer Programs in Physics (CPiP)
These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged.
Computational Physics Papers (CP)
These are research papers in, but are not limited to, the following themes across computational physics and related disciplines.
mathematical and numerical methods and algorithms;
computational models including those associated with the design, control and analysis of experiments; and
algebraic computation.
Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.